ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Enhancing the Visual Documentation
Artifacts in Envision

Bachelor Thesis

Sascha Beat Dinkel

Chair of Programming Methodology
Department of Computer Science
ETH Zurich

www.pm.inf.ethz.ch

October 28, 2014

Supervised by: Dimitar Asenov
Prof. Dr. Peter Miiller

www.pm.inf.ethz.ch

Contents

1

Introduction
1.1 Motivation and Goals oo
1.2 Comments Framework
1.3 Related Work
1.3.1 Barista e
1.3.2 Programs as visual, interactive documents
1.3.3 Doxygen o e
1.3.4 MIT’s Alloy Analyzer
Design
2.1 Diagram editor
2.2 Source code blocks
2.3 Tables oL e
2.4 Integration of comments L
2.4.1 Storage of comment nodes
2.4.2 Visualization of integrated comments
2.5 Doxygen Generationo
2.5.1 Mapping of documentation artifacts to Doxygen
2.5.2 Supported Doxygen functionality
2.6 MIT Alloy Integration
2.6.1 Interaction with the Java based Alloy library
2.6.2 Displaying the generated model images

Instruction manual

3.1
3.2
3.3
3.4
3.5
3.6

Diagram Editor e
Source code blocks
Tables o
Integration of comments oo
Doxygen Export
Alloy model generation oL

Implementation Details

4.1

4.2

4.3

4.4

Diagram Editor
4.1.1 Arrow drawingo
4.1.2 Color picker
Tables o
4.2.1 Resizing of Tables o
4.2.2 The GridLayout and itsstyle
Integration of Commentso
4.3.1 CompositeNode and Attributes
Doxygen Export Lo
4.4.1 Generate source file with comments
4.4.2 Generating images of comments L

14
14
15
15
16
17
18

4.5 Alloy 24

4.5.1 The AlloyIntegrationCLI 24

5 Conclusion and Future Work 25
5.1 Future Work 25
5.1.1 MIT’s Alloy Analyzer 25

5.1.2 Recognition and visualization of standard patterns 25

5.2 Conclusion e e e 26
References 27

1 Introduction

Envision is a next generation development environment written in C++. Its development
was started by Dimitar Asenov during his Master’s Thesis [1]. It aims to improve the
development experience with graphical representations of language constructs. Since the
beginning of software development creating applications is primarily writing source code
in a text editor. Research has shown that code visualizations can benefit developers. The
goal of Envision is to make program comprehension and navigation easier and therefore
improve productivity by structuring the code graphically.

Apart from representing the executable code, Envision also has the ability to graphically
support various kinds of software engineering artifacts. These artifacts are used to
document the code and consist of enhanced comments (bold, italic etc.) as well as
pictures and diagrams. This functionality has been introduced by Jonas Trappenberg
in his Bachelor Thesis [2]. The goal of this thesis is to expand the documentation
features of Envision by improving the visualizations and interactions of existing artifacts,
introducing support for new artifacts such as tables or source code comments, adding
the functionality for generating documentation using Doxygen and implementing a basic
functionality for generating Alloy models out of code contracts.

1.1 Motivation and Goals

Envision already supports different documentation artifacts, but the original implemen-
tation had some drawbacks. Some artifacts which would be useful are not available at
all like tables or source code blocks. At the same time other useful artifacts like the
diagram editor are available but uncomfortable to use.

Therefore the goal of this thesis is to improve and extend the current state of the doc-
umentation features of Envision. Below we list and motivate all the objectives of this
thesis.

Tables

Tables are common building blocks in a variety of different applications. Therefore in
addition to the already implemented features in the documentation artifacts, support for
tables has been added. Tables can contain simple text or other documentation artifacts.
The syntax for the documentation artifacts has been extended to describe tables in a
reasonable way. Tables can now be used in a similar way to diagrams.

Support for adding source code blocks in comments

Before this thesis it was only possible to have documentation artifacts in the source code,
but it was not possible to have source code in the documentation artifacts. This feature
has been added. The commented source code is displayed in an appropriate style using
the standard code visualizations of Envision but faded out to indicate that it is not real
source code.

Improvements of the diagram editor

Envision already supported diagrams as a documentation artifact before this thesis. This
included creating and editing diagrams consisting of simple shapes, connecting lines and
text. The functionality of this diagram editor was sufficient but its usage was quite cum-
bersome. Therefore the diagram editor has been improved to make it easier to use. The
goal was to make it conveniently possible to draw a diagram similarly to how it is done
in standard diagram drawing programs like Microsoft Visio. To achieve that the usage
of the mouse has been expanded and a toolbar with the different shapes and commands
has been introduced.

Integration of documentation artifacts

Before this thesis documentation could be inserted only at places where a statement
could be inserted. Often, it is necessary to document a programming construct like a
class or a function itself and not only some place inside a function. Therefore we imple-
mented the possibility to integrate documentation artifacts with all major programming
constructs.

Generation of source code with Doxygen comments

Doxygen is a tool for generating software documentation using special comments in the
code. It is widely used in practice and therefore we wanted to support it in Envision. To
do this we extended Envision to generate source code with Doxygen comments using the
information in its AST about the code and the documentation. In order to achieve this,
the different documentation artifacts had to be translated into an appropriate Doxygen
comment.

Generation and visualization of Alloy models as documentation

Alloy is a language to describe specifications which can then be analysed by the Al-
loy tool. Alloy also generates images of possible models out of this specification. This
functionality suits well to Envision, since it also helps to improve the development by
providing appropriate visualizations. We implemented a prototype plug-in for the Alloy
integration which generates Alloy code out of code contracts and uses the Alloy library
to generate appropriate images. These images can then be displayed in a pop-up within
Envision.

1.2 Comments Framework

As mentioned in the introduction there is already a lot of functionality for comments
available. The general approach of this work will therefore be to reuse this framework
and design new functionalities in a similar way.

In Envision the code is represented as a tree of programming constructs. Every such
element is called a node. To visualize the code every such node has an appropriate
visualization class. A comment is also represented by such a node of type CommentNode
which is the base class of all comments. A comment node can be inserted at any place a
statement can be inserted. This node then stores every construct which is used inside this
comment. The comments written by the user are parsed and translated into appropriate
constructs. Simpler features like bold or italic text are described using markdown syntax
and stored as plain text. On the visualization side this syntax is translated into HTML
and then rendered by Qt. Larger constructs like diagrams have their own node and
visualization. These constructs are stored as separate tree structures and not as text.
They are created using special keywords in the comment’s markdown. If such a keyword

appears an appropriate node will be created and appended in a list of nodes of that type
inside the comment node. If the comment gets visualized, the keyword will be replaced
by a visualization of the corresponding construct. Since the comment node has a list of
all constructs used inside the comment, there is the functionality to refer to the same
construct at multiple places in the comment.

In this work there are two extensions which require the adding of new nodes and visu-
alizations: tables and code blocks. Here a similar approach as with diagrams will be
used.

1.3 Related Work

There exist many documentation tools and tools for creating and visualizing software
engineering artifacts. In this section we discuss a few of them that are more closely
related to our work.

1.3.1 Barista

Barista is an implementation framework which offers data structures, algorithms and
interaction techniques for creating sophisticated text editors [3]. These text editors work
with plain source code files but interpret the code internally as an abstract syntax tree
and are therefore able to offer additional features. From our view the main feature is that
they allow programming constructs to have a more readable pretty printed visualization
in addition to the editable textual representation. Enhanced comments representing
more than simple text are also supported. The comments are described using HT'ML
and are rendered directly in the editor. Like many implementations in this area Barista
is based on the model-view-controller architecture.

Barista is similar to Envision since it also tries to improve the development by offering
additional visualization. However the functionality of Envision goes beyond the one of
Barista. Envision is a lot more interactive, so you can edit programming constructs
directly in their visualizations. In Barista you often have to go back to a code like view
if you want to edit something.

1.3.2 Programs as visual, interactive documents

French et al. present another approach to combine textual and visual programming [4].
They claim that pure visual programming environments are often more inconvenient
than useful and also suffer from the scaling up problem. Therefore they choose a hybrid
approach, so only elements which really benefit are visualized in a special way. An open
source implementation called the Larch Environment is available.[5]

They state that these visual, interactive objects can be embedded within textual source
code and source code can further be embedded in those objects. Therefore it is possible
to structure actual source code in visual elements like a table. However apart from this
visual elements the code itself is still represented as pure text. This is the main difference
to Envision where special visualizations are also used to represent the code in order to
make comprehension and navigation easier for the developer.

W N OO W N =

o
o ©

11
12
13
14
15
16
17
18
19
20
21
22

1.3.3 Doxygen

Doxygen is a tool for generating documentation from source code comments of different
programming languages [6]. To do this, Doxygen supports a special syntax for the com-
ments to describe various things like tables, pictures, formatted text and so on. Therefore
it also aims to improve the documentation features by allowing more functionality than
ordinary text, similar to the documentation artifacts of Envision.

Doxygen supports many common programming languages as input like C++, Java or
Python. On the output side, Doxygen supports the generation of commonly used formats
like HTML or KTEX.

A difference to Envision is that documentation is not visualized in-line. You first have
to write the code with the comments and run the Doxygen tool on it to actually create
the visualizations. Another difference is that Doxygen is a lot less interactive, every
documentation is described as pure text.

1.3.4 MIT’s Alloy Analyzer

Alloy is a language to describe specifications of a model, and a corresponding tool to
analyse such models [7]. It can therefore check if such a model is satisfiable and generate
instances of it. Although this does not look related to the topic of this thesis at a
first glance, an important ability of Alloy is that it can generate diagrams of possible
instances. This allows the user to quickly spot instances which are not desirable and
therefore to refine the initial specifications.

In the context of Envision we want to integrate Alloy to generate such diagrams from
within Envision and show them in-line just like an ordinary artifact. As a source for Alloy
we want to use specifications expressed in Envision using syntax resembling Microsoft’s
Code Contracts for .Net. [8]

In listing 1.1 you see a reference specification of a linked list. The corresponding image
in figure 1.1 shows one possible instance of this specification generated by Alloy.

module LinkedList
LinkedList0

sig LinkedList { root: lone Node }
sig Node { next: lone Node } root
fact nextNotReflexive
{

no n:Node | n = n.next Node4 LinkedListl
}
fact allNodesBelongToSomeLinkedList next root
{

all n:Node | one q:LinkedList | n in g.root.*xnext
} Node2 Node3
fact nextNotCyclic
{ next next

no n:Node | n in n. next
}

Nodel Node0
pred show () {}
run show for 5 but exactly 2 LinkedList
Listing 1.1: Specifications of a LinkedList Figure 1.1: Generated instance
by Alloy

2 Design

In this section we will describe our work from a high-level perspective. We will outline
how we achieved the goals of this work and explain fundamental design decision.

2.1 Diagram editor

In the initial implementation of the diagram editor by Jonas Trappenberg, the command
line was used to add shapes or change colors. While using the command line is suitable
for creating code in Envision, it is incongruous for manipulating diagrams. The goal of
improving the diagram editor is therefore to allow the user to do all operations without
using the command line. To do that the main change is to introduce a toolbar which
offers all possible operations of selected shapes. Additionally the function of the mouse
has been improved, it is now possible to directly drag new shapes into the desired size.
Before our work the diagram editor had a separate editing mode, we removed this mode
since we did not see a benefit of it. The toolbar offers every manipulation possible in
the diagram editor. This includes the following functionality:

e Creating new shapes
e Changing color of background, outline and text of shapes
e Show connection points for connectors

While developing the usability improvements, we discovered that it would be quite easy
to implement some useful additional features. Therefore we extended the initial func-
tional requirements with the following ones:

e Arrows for the connectors
e QOutline size for the connectors and shapes
e Outline type for the connectors and shapes

To help the user, the toolbar will only offer possible actions according to the current se-
lection. For example the color-selector will only be accessible if a shape is selected.

Another problem was the position of the toolbar and when it will be visible. We decided
to use a free floating toolbar which will be displayed at the bottom of an active diagram
by default. The user can then move the toolbar to any position they prefer. This
functionality is needed if the user works on a large diagram or if one zooms in a lot.

A diagram becomes active as soon as the user clicks on any element of the diagram. If
the user clicks on something outside the diagram the toolbar will disappear.

2.2 Source code blocks

For representing code blocks we added a new node. This node consists of a string
representing its name and a reference to another node of any type. We call this concept
of a node which can contain another node of any type a free node. The contained node
can therefore be a code construct like a class or a method as well as another comment.
This free node is the basis of code blocks as well as tables.

On the visualization side there is a new class which visualizes the free node. This class
just uses the already available visualization of the contained node, but adds a small
effect. To indicate that the node referenced is a comment and not part of the actual
code, it is faded out.

Ordinarily programming constructs are created using the command line. To separate
the creation of real code blocks and code blocks in comments we have chosen another
approach. Every free node holds a text field by default. The user can then enter the
name of the desired construct and replace the text field with this construct by using a

shortcut ([ctrl]+[2]).

2.3 Tables

For representing tables we added another new node. This node consists of a string
representing its name and an array which holds free nodes. By a free node we understand
the concept of a node which can contain another node of any type as we introduced in
the last section. Additionally there are two integers representing the row and column
count of the table.

On the visualization side there is a new class which visualizes the table. This class uses
an existing visualization of a grid to display the table. This grid was improved so that
it can display grid lines which we use in our table.

We reuse the free node here because the free node offers the functionality to edit and
display comments as well as programming constructs. By this we already have all we
need to allow the user to create and visualize a variety of different kinds of tables. The
user can either use the text box of the free node to write ordinary text, or he can use the
functionality to replace the text box with a programming construct or a comment.

2.4 Integration of comments

A limitation of the former implementation was the fact that comments could only be
inserted where statements could be inserted. In this section we describe the design
decisions we made to assign comments directly to nodes like classes or methods.

2.4.1 Storage of comment nodes

In order to integrate comments with programming constructs, these constructs have to
be extended with a comment node. There are two ways to do that. The first is to
append this comment node to a higher node up the type hierarchy such that all nodes
inheriting from it get a comment. The second is to append this comment node only to
specific nodes. We explored both possibilities and list some facts about them below.

Using inheritance

- More flexibility for the user since everything can have a comment

- More beautiful design in terms of object orientation

- More space consumption since every node holds a pointer to a comment
- More care needed to select the right construct to assign the comment

Using specific nodes
- Problem of determining which constructs should have a comment node
- More efficient use of space, since only sensible nodes have a comment

We have chosen a mix between these two options. We want to be flexible and let
the users assign comments to everything they want. On the other hand there are types
of nodes where comments are seldom necessary and would only waste space. This is the
case for really basic construct like integers or text. Additionally the structure containing
an integer or text is a CompositeNode whose position in the class hierarchy can be seen
in figure 2.1. So it is enough to offer the possibility to assign a comment to such a
structure. Because of that we decided to extend the CompositeNode with a comment
attribute.

Node

_—

Integer

Float Text

CompositeNode

] List

/ il m‘\

| Method

CastExpression ReferenceExpression AssignmentExpression Module FormalArgument VariableDeclaration

| Class

Figure 2.1: Position of the CompositeNode in the class hierarchy of Envision

2.4.2 Visualization of integrated comments

The most important design question was how to visualize the integrated comments. We
decided to split the programming constructs into two parts where each part has a specific
way of visualizing the associated comments.

Bigger constructs (project, module, class, method)
The bigger construct have a visualization of the comment in their header area. There-
fore as soon as such a construct has an associated comment it will always be visible.
Ordinary comments which are not associated with a particular construct but just appear
inside the body of a method will also always be displayed.

Smaller constructs (expressions, statements, etc)

The comments of the smaller construct are not visible by default. They will get visible
in a dialogue like overlay if the user presses a shortcut ([]+[F1]). In order to know
which of the smaller constructs have an associated comment, there is another shortcut
to highlight these constructs ([F1)).

10

We did this partitioning because it is obvious that we cannot display every comment of
every construct all the time. Assume every statement inside a function has a comment,
the screen would be crowded with comments. On the other hand the comments of larger
constructs are likely more important and there is also more place available for them in
the header area of such larger constructs.

2.5 Doxygen Generation

To use Doxygen we have to create an input file which consists of code and special
comment features. Since the goal of Doxygen is to describe the interfaces of a project
and not implementation details, the generated code does not need to be complete.

Doxygen supports a variety of programming language but we decided to stick to C++,
since we are already familiar with it by working on Envision itself. Therefore we generate
a single C++ file consisting only of namespaces, classes and empty functions.

2.5.1 Mapping of documentation artifacts to Doxygen

In order to use Doxygen we have to map the documentation artifacts of Envision to an
appropriate input for Doxygen. To describe special features in comments, Doxygen is
able to understand HTML and markdown. While it would be convenient to only use
markdown, some artifacts like tables need to be described with HTML in order to allow
nesting.

Since the markdown support of Doxygen is quite new and due to the fact that we
discovered some undesired behaviour when mixing HTML and markdown we decided to
translate every documentation artifact into appropriate HTML statements. For special
artifacts like diagrams or code blocks, there does not exist a direct translation to HT'ML.
For these artifacts an image is generated.

2.5.2 Supported Doxygen functionality

Doxygen offers a lot of special syntax which can be used to describe comments. For
our work we only use a small subset of the available Doxygen commands. With this
subset we were able to transform all documentation artifacts of Envision to appropriate
Doxygen comments. The following table summarizes all features that we used from
Doxygen.

feature Used for
/**x and */ Ordinary comments about modules, classes and methods
\param Comments about parameters of a method
\parblock Assign multiple lines of comments to a parameter
\result Comment about the result of a method
\htmlonly | Tells Doxygen to just accept HTML and do not interpret it
HTML Used to describe various documentation artifacts for Doxygen

The \htmlonly is needed for constructs for which we generate some HTML code and
just want Doxygen to accept it and copy it on the generated page. This is especially
needed for inline HTML and inline browsers using an iframe.

11

Note that we only need a few Doxygen features because we express most Envision
documentation artifacts directly in HTML. For example insted of using the Doxygen
keyword \image we include an image just by using the common HTML code .

2.6 MIT Alloy Integration

In Envision, specifications can be described using a syntax similar to Microsoft’s Code
Contracts for NET. We use Alloy to generate models out of these specifications. To do
that we have to translate the code contracts to Alloy code and use the Alloy library to
get models from it.

2.6.1 Interaction with the Java based Alloy library

Alloy offers an API to its library. Through this API Alloy’s functionality can be used
by another program which is exactly what we do. As Alloy is written in Java we cannot
directly use it from Envision.

We explored two possibilities to make that interaction possible, namely:
e Use JNI (Java Native Interface) to call Java-code from C++

e Write a small Java program which does all the Alloy operations and communicate
on the command line with it

Working with JNI is rather inconvenient because one needs to create special objects
which hold all the Java items. For example if you want to pass a string to a Java
function from your C++ code you need to create an object of the Java string class and
transform your C++ string into it. Therefore you have a crucial overhead in your code
by using JNI compared to a pure Java implementation.

Because of that we decided to have a small Java application which does all the operations
involving the Alloy library. The question then was interacting with that application by
JNI or by command line.

The Alloy library offers functionality to save all all generated models as image files. So
we only need to pass three things to our Java application:

e The Alloy model
e The desired output directory
e The maximum number of models we want to generate

The JNI version would give a better performance than doing the detour over the com-
mand line, but since the time to pass the arguments is a lot smaller compared to the
time required to actually generate the models, this advantage is negligible. Because of
that we decided not to use JNI since is does not give us essential benefits.

12

2.6.2 Displaying the generated model images

We assumed that the usual work flow when using the Alloy functionality would be:
e Write some code contracts
e Go through the models and find undesired instances
e Refine the code contracts

Therefore it is important that you can go quickly through all the models. This can be
achieved by displaying all images in a table or grid, or by displaying them in some kind
of slideshow. There already exists an overlay which can display some kind of dialog with
a visualization in it. Since creating a table, grid or a slideshow can easily be done using
HTML and Javascript, we decided to just generate that HTML and use it as an input
for this overlay with a browser in it.

Therefore we created a simple HTML page which visualizes the models. This page could
be edited outside of Envision and is independent of the rest of the integration. This page
is then simply shown whenever the user generates the models. This design is flexible
and we can change the presentation of the models by just changing the HT'ML page and
leaving the rest of the integration functionality intact.

13

3 Instruction manual

3.1 Diagram Editor

Every manipulation on a diagram can now be done by using the toolbar. The toolbar is
displayed at the bottom of a diagram as soon as you click on the diagram. In figure 3.1
you can see the toolbar and the features it offers.

Diamond

Il A - B X
) B B G Ty [] D8 OE N
A B C D E F

Figure 3.1: The diagram editor and its toolbar

(A) Selection mode

(B) Shape creation

(C) Color selection

(D) Outline selection

(E) Arrow selection

(F) Connection-points

This is the default mode in which you can select shapes or
connectors in the diagram and move or resize them. You can
also select the text of a shape and modify it.

By clicking on this toolbar item a drop-down menu opens in
which you select one of the three supported shapes (rectangle,
ellipse, diamond). You can then do a single click on the diagram
to create the selected shape at this place with the default size,
or you can click and drag it to the desired size.

If you select a shape, the toolbar items for the background, out-
line and text color of that shape become available. By clicking
on each of them a color-picker opens in which you can select
the desired colors.

If you select either a shape or a connector, the selection for the
outline type and the outline size become available. By clicking
on each of them a drop-down opens in which you can select the
desired parameters.

If you select a connector, the selection for the arrowheads be-
come available. By setting the check-boxes you can choose if
an arrowhead is displayed at the beginning and the ending of
the connector.

By clicking on this item, the connection points of the shapes
will become visible. You can then click on two such points to
establish a connector between them.

14

3.2 Source code blocks

A source code block can be created by entering the following text in the comment editing
window:

[code#aName]

This will create a free node with the name aName. A free node is a node which can
contain another node of any type as described in the design chapter. You can use the
same name later to refer to that free node.

After creation a text-box appears in which you can write the name of a programming
construct. By pressing [ctrl]+[] the text-box will be substituted with the graphical
representation of that programming construct. If you enter something invalid this text
will be deleted. The following names for programming constructs are supported.

comment, class, method, statement, block, foreach, if, loop, switch,
expression

As you can see there is also support for a comment node inside a free node. The purpose
of this functionality is mainly to allow comments inside tables, since a table consists
of free nodes. You can read more about that in the next section about tables. The
programming constructs in a free node are displayed faded out to distinguish them from
constructs used in the real environment. However if such a construct has focus the fading
will temporarily be removed. The fade out effect is shown on figures 3.2 and 3.3

—[HelloVVorld

Figure 3.2: An unfocused code block Figure 3.3: A focused code block
inside a comment inside a comment

To delete the current content of the code block and make it accept new commands, press
(ctrl]+[Delete] while the code block has focus. This will bring back the text-box.

3.3 Tables

A table can be created by entering the following command in the comment editing
window:

[table#taName#rowCount#columnCount]

This will create a table with the name aName and the dimensions rowCount* column Count.
If you want to refer later to that table you can use the shorter instruction without the
dimensions:

[table#aName]

15

After creation, the table consists of empty text-boxes. These text-boxes behave exactly
like the ones of the code blocks. So you can write ordinary text or use the functionality
to replace them with programming constructs. It is worth mentioning here that you
can use this functionality to insert comments. With this you can have documentation
artifacts like diagrams or pictures inside a table. You can also use the markdown text
features for example to design the headers of a table. You see such an example in figure
3.4.

Column 1 Column 2 Column 3/ Column 4

just text more text

Figure 3.4: Example of a table, the first row are comment fields

3.4 Integration of comments

To create a comment for a specific programming construct, select it and press [T]+
(F1]. This will create and show a new comment with the default text linked to that
programming construct. If the selected programming construct already has a comment,
pressing this key combination will just show it.

The comment will be displayed in one of two ways depending on the type of programming
construct it belongs to.

If the comment belongs to a large construct like a
class, method and so on, it will be displayed in the
header of that construct and will therefore always be
visible. In figure 3.5 you see an example of such a

large construct. Figure 3.5: Large construct

This is a class

If the comment belongs to a small construct like an int index| 49|

assignment, argument and so on, it will be displayed comment X

in a pop-up and will therefore usually be hidden. In This is a variable
figure 3.6 you see an example of such a small con- '

struct. Figure 3.6: Small construct

In order to figure out which of the smaller constructs already have an associated comment
you can press to highlight them. You see such an example in figure 3.7.

To close a comment pop-up you can select the appropriate construct and press [{ |+[F1]
or you can click on the X icon of the pop-up.

To remove the comment you can select the appropriate construct and press [T]+[F2].

16

Ol o H,, .

This is an iterative implementation of a factorial function

int result « 1

@b
Elint | 1][i +< 1} result « -1

result & |

<2J result
o J

Figure 3.7: Method with highlighted available comments

3.5 Doxygen Export

To export the comments to Doxygen just open a prompt inside Envision by pressing

and then enter:

doxygen

This will create an HTML documentation of the code with all the comments translated
to appropriate Doxygen visualizations.

The documentation will be stored in the doxygen»html folder in the directory of Envi-
sion’s executable.

In figure 3.8 you see a part of a generated HTML page by Doxygen. This part shows the
detailed description of a module. There are different documentation artifacts involved
in this example: an enumeration, a table, a diagram and a code block.

Detailed Description

This is the Lambda-Module. The following classes are available

e |[Unary

* IBinary

+ INoReturn
¢ LambdaTest

Here you find an example of documentation artifacts in a table

Diagram Code block

m*

Figure 3.8: Part of an HTML page generated by Doxygen

17

3.6 Alloy model generation

To generate instances by Alloy open a prompt inside Envision by selecting an object and
pressing [ESC|, and then enter:

alloy

This will generate instances of the current class (the one which has the cursor) and
show the instances in a pop-up. In order to do this Envision will first generate Alloy
code out of the code contracts used in the class. After that Envision will call the
AlloyIntegrationCLI which generates the instances out of this Alloy code using the
Alloy library. Be aware that this computation will take some time, typically a few
seconds. In the pop-up you can use the following keys to navigate through all the
instances.

Key

Action

Page Up oror

go to previous instance
go to next instance
go to first instance
go to last instance

In figure 3.9 you see an example of such a pop-up showing one of the instances generated
by Alloy.

AlloyModels X

Alloy Model: 1/20

LinkedList0

Node2

\’:}:t

Nodel Noded

\'-'L”“beﬁ‘lumber

LinkedListl

number

Figure 3.9: One instance out of twenty generated by Alloy

18

4 Implementation Details

The purpose of this chapter is to give more information about the concrete implemen-
tation. To do this we focus on parts of the code which we consider consider important
and not straightforward. We explain these parts in details and also provide code snip-
pets.

4.1 Diagram Editor

4.1.1 Arrow drawing

The idea we used was that an arrowhead is a triangle, or better said a polygon of three
points. Since Qt allows drawing and transforming polygons easily, we only have to define
such a polygon and rotate and translate it to the right place and draw it there.

Since the starting point of this polygon is the tip of the arrowhead, we just have to
translate it to one of the two points which defines the line. To rotate it correctly we
need the slope of the line which can be calculated by m = % Fortunately Qt offers
some functionality to get that slope quite easily as can be seen in listing 4.1.

1| double angle = —QLineF (startPoint_ , endPoint_).angle();

© W N U e W N

Listing 4.1: Getting the slope of the line

After we have all the information needed, we can place and draw the arrowhead. To do
this we use Qt functions to avoid manual computation. After the arrowhead is placed
the corresponding point of the line has to be replaced, otherwise the tip of the arrow
would be overlaid by the line.

In listing 4.2 you see the code which implements this functionality. In line 3 and 4
the coordinate system of a matrix is first rotated by the slope of the connector and
then applied to the polygon which represents the arrowhead. After that in line 5 the
arrowhead is translated to the starting point of the connector and drawn to the scene
in line 6. Finally in line 7 and 8 the starting point of the connector is adjusted to avoid
the overlay problem.

if (node()—>startArrow())
matrix.rotate (angle);
arrow = matrix .map(anArrowhead);
arrow . translate (startPoint_);
painter —>drawPolygon (arrow);
newStart = QPointF ((arrow [1].x() + arrow[2].x())/2,
(arrow [1].y() + arrow [2].y())/2);
}

Listing 4.2: Drawing the starting arrow

19

N O U R W N =

4.1.2 Color picker

Most functionality of the diagram editor’s toolbar is implemented using basic graphical
control elements provided by Qt, like QCheckBox for setting start and ending arrows. The
only exception is the color picker. Qt provides a graphical control element for choosing
colors (QColorDialog) but this is too heavyweight for our purposes.

Our color picker consists of a grid of buttons which represent the possible colors. You
can see an image of the color picker in figure 4.1. To handle the events if a button is
pressed we use the Signals & Slots mechanism of Qt. If a button is pressed a signal is
emitted containing a QString with the rgb value of the color. This signal is send to a
slot of the toolbar which then actually applies the rgh value to the selected shape. Since
every button emits the same signal just with a different color, we use the QSignalMapper
to manage this. In listing 4.3 the core part of the signal mapping is shown.

Diagram/ Editing Toclbar

O G T~ .(11¢]|0 &8 O

Figure 4.1: The toolbar with the color picker

QSignalMapper* signalMapper = new QSignalMapper (this);
connect (signalMapper , SIGNAL(mapped(QString)), this, SLOT(handleColorPicked (QString
for (int i = 0; i < colors.size(); i++)
{
signalMapper—>setMapping (aButton, colors.at(i).name());
connect (aButton, SIGNAL(clicked ()), signalMapper, SLOT(map()));

Listing 4.3: Event handling of the color picker

4.2 Tables

Tables are internally represented as one dimensional lists. This is because the possible
types of attributes are limited and something more convenient like a list of lists cannot
be used. However the interface to access nodes in a table uses coordinates to simplify
its usage.

20

~—

0 N O G W N

I I I I R R e i S T e e e
TR W N RO © O O W O O

4.2.1 Resizing of Tables

Resizing a table could be done by creating a new array with the desired size and copying
all nodes from the old table within range. Empty elements could be filled up with the
default element, in this case a default CommentFreeNode.

Unfortunately this does not work, because a copied node still has the old table as parent.
We have to use the replaceChild method of a node first to replace that node with
something arbitrary, in our case a new default CommentFreeNode. After that the node
does not belong to the old list any more an can be appended to the new one.

At the end we have to use the replaceChild method of the table itself to replace the
new table with the old one. In listing 4.4 you see the resize method of the Table.

void CommentTable:: resize (int m, int n)

{
auto aList = new Model:: TypedList<CommentFreeNode>;
for (int i = 0; i < n; i++4)
{
for (int j = 0; j < m; j++)
{
if (j < rowCount() && i < columnCount())
CommentFreeNodex aFreeNode = nodeAt(j, i);
nodes()—>replaceChild (aFreeNode, new CommentFreeNode(nullptr, ""));
aFreeNode—>setName (name()+"_"+QString :: number (j)+"_"+
QString :: number (i));
aList —append (aFreeNode);
}
else
aList —>append (new CommentFreeNode(nullptr , name()+"_"
+QString : : number (j)+"_ "+QString :: number (i)));
}
}
replaceChild (nodes (), aList);
setRowCount (m) ;
setColumnCount (n);
}

Listing 4.4: Resizing a table

4.2.2 The GridLayout and its style

We use the available GridLayout class to actually visualize the table. We have to create
a QList< QList< Model::Node*> > from the nodes in our table and pass it to the
GridLayout.

The only visualization problem here is that we do not have grid lines. To solve that we
extended the style file of the GridLayout with information about the desired grid lines.
Then we added a paint method to the GridLayout which actually draws the lines. The
default style is that no lines will be drawn, so other parts of Envision which use the grid
are not affected.

In the style file of the table we added the relevant information about the grid lines.

21

-

4.3 Integration of Comments

4.3.1 CompositeNode and Attributes

By default a CompositeNode does not have attributes. To allow the functionality of
integrated comments this needs to be changed. Fortunately this can be done by simply
commenting two lines of code in the AttributeChain class. The needed change can be
seen in listing 4.5.

//if (parentChain == &CompositeNode :: getMetaData ())
return; // a null parent indicates direct inheritance from CompositeNode

Listing 4.5: Needed change to allow attributes in CompositeNode

As a drawback, every CompositeNode now needs more memory for the additional com-
ment attribute.

4.4 Doxygen Export

4.4.1 Generate source file with comments

In order to create a valid input for Doxygen we have to do two parts. First we have to
generate valid C4++ source code from Envision’s AST and second we have to translate
the documentation artifacts to valid Doxygen commands which can be inserted in that
C++ code. We use a separate visitor pattern for both parts. The first visitor called
DoxygenWholeTreeVisitor generates dummy C++ code (empty function bodies) and
calls the second visitor called DoxygenCommentsOnlyVisitor which creates the actual
Doxygen comment. We did this separation mainly to allow the reuse of the Doxygen
comment generation in other areas where source code is generated. For example the
JavaExporter could be modified to enhance the generated source code with Doxygen
comments.

The next listing summarizes the functions of the two visitors.

DoxygenWholeTreeVisitor

- Generates dummy C++ code

- Includes generation of modules, classes, methods and fields
- Empty method bodies

DoxygenCommentsOnly Visitor

- Generates the comment in Doxygen syntax for a specific node
- Can be reused when generating real source code

- Uses HTML to describe comments

In listing 4.6 you see the generation of the source code for a class. The DoxygenCommentsOnlyVisitor

is called before the actual code generation to get the comment in Doxygen syntax in front
of the corresponding construct.

22

© 0N U e W N

11
12
13
14
15
16

© 0 N O U s W N

e e e
TR W N = O

Visitor ::addType<Class >([](DoxygenWholeTreeVisitor* v, Class* t) —> QString

{

"o

QString res = ;
res += aDoxyCommentVisitor_ —>visit (t);
res += "public: class " + t—>name();
if (!t—>baseClasses()—>isEmpty()) res += ",:u";
for (auto node : xt—>baseClasses ())

res += StringComponents::stringForNode(node) + ",";
if (!t—>baseClasses()—>isEmpty()) res.truncate(res.length()—1);
res += "\n{\n";
for (auto node : xt—>fields ()) res += v—>visit (node);
for (auto node : *t—>methods()) res += v—>visit (node
for (auto node : *xt—>classes()) res 4+= v—>visit (node
res += "};\n\n";
return res;

);
)7

Listing 4.6: Generating the source code of a class

4.4.2 Generating images of comments

Elements like diagrams need to be represented as images in the Doxygen export. For
this we need the functionality to turn a Node into an image.

The first approach we used was getting the visualization of such a node by calling the
findVisualizationOf (aNode) method. We then used a function in the Item class to
turn that visualization into an image.

This approach has two drawbacks. First you can see things like a selection or the cursor
on the generated images. Second some nodes cannot be handled this way, because there
does not exist a visualization of them yet. This is the case for comments which are
hidden by default.

To solve that problem we wrote a generic function which takes a node and creates a
visualization of it on a new scene. In listing 4.7 you see this method.

void ModelRenderer :: renderToSVG (Model : : Nodex aNode, QString path)
{

auto aScene = new Scene ();

auto anltem = new Visualization :: RootItem (aNode);

aScene—>addTopLevelltem (anltem);
aScene—>updateNow ();

QSvgGeneratorx svggen = new QSvgGenerator;

svggen—>setFileName (path);

svggen—>setResolution (90);

svggen—>setSize (aScene—>sceneRect (). size (). toSize ());

QPainter svgPainter(svggen);

svgPainter.setRenderHint (QPainter :: Antialiasing);
aScene—>render(&svgPainter , QRectF (), anltem—>sceneBoundingRect ());

Listing 4.7: Generating an image of a node

23

© 0 N O U e W N

R e e
B W NN = o

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Ul W N

4.5 Alloy

4.5.1 The AlloyIntegrationCLI

We explored different ways to use the AlloyIntegrationCLI. We first tried to call it by
using JNI. We managed to do that but it was quite cumbersome due to a large overhead
needed in the code to create the appropriate Java constructs. Therefore we decided
to not use the JNI implementation. For completeness you find this approach in listing

4.8.
int main()
{
JavaVM * jvm;
JNIEnv *env;
JavaVMInitArgs vm_ args;
JavaVMOption options;
options.optionString = "—Djava.class.path=/temp/alloy/AlloyIntegrationCLI. jar";
vm__args. version = JNI_VERSION_1_ 6;
vm__args.nOptions = 1;
vm__args.options = &options;
vm__args.ignoreUnrecognized = 0;
char inputhPath[] = "/temp/alloy/model. als";
char outputDirectory [] = "/temp/alloy /output/";
int ret = JNI_CreateJavaVM(&jvm, (voidx*)&env, &vm_args);
jclass aClass = env—>FindClass (" AlloyWrapper");
jmethodID aMethod = env—>GetStaticMethodID (aClass, "main",
"([Ljava/lang/String;)V");
jclass stringClass = env—>FindClass("java/lang/String");
jobjectArray args = env—>NewObjectArray (2, stringClass, nullptr);
env—>SetObjectArrayElement (args ,0,env—>NewStringUTF (inputhPath));
env—>SetObjectArrayElement (args ,1,env—>NewStringUTF (outputDirectory));
env—>CallStaticVoidMethod (aClass , aMethod, args);
return 0;
}

Listing 4.8: Calling the AlloyIntegrationCLI with JNI

We therefore decided to just use a command line interface for that. This results in a
much shorter code and better decoupling as you can see in listing 4.9.

QProcess aProcess;
aProcess.setWorkingDirectory (QDir:: currentPath ());

aProcess.start ("java,—jar AlloyIntegrationCLI.jar " + inputFile + ",

"

+ outputDirectory);

aProcess.waitForFinished ();

Listing 4.9: Calling the AlloyIntegrationCLI by command line

24

5 Conclusion and Future Work

5.1 Future Work

With the work done in this thesis the overall documentation features of Envision could
be improved and extended. Nevertheless there is still space for further functionality.

A selection of additional features that would improve Envision’s documentation features
are listed below.

5.1.1 MIT’s Alloy Analyzer

We implemented a basic support to generate Alloy models out of code contracts. As
a minimum test case for this we have chosen an implementation of a linked list as a
reference and tried to get valid models out of it. This target could be achieved.

On the interaction side with the Alloy library we implemented a small Java program
which does all the work on the library and can be called by the command line. The
visualization of the generated instances could be solved by using HTML and Javascript
and show the result in a pop-up.

On the input generation side for Alloy there is a lot of space for improvements. Actually
we only support invariants, pre- and postconditions and quantifiers. Currently it is
only possible to describe static models. Functions which change some state, cannot be
described at the moment.

The flaws could be tackled in a later work to to improve the Alloy integration.

5.1.2 Recognition and visualization of standard patterns

Design patterns are often used in object-oriented software design. Envision could be
extended in a way that it graphically displays the used patterns using the concrete
information in the code. A UML class diagram of the pattern with the major components
and relationships and a sequence diagram depicting the interactions between the different
classes of the pattern could be supported.

This functionality can be achieved in the following two ways:

1. By automatically analyzing the class relationships and inferring what patterns are
used there.

2. By manually annotating the code. These annotations could then be used by En-
vision to visualize the pattern.

The first option is clearly preferable since it does not require additional work from the
user, on the other hand it requires a lot more effort to implement.

25

5.2 Conclusion

There was already a substantial implementation for the documentation artifacts available
in Envision before this work. Nevertheless there where also some flaws: uncomfortable
to use features like the diagram editor or useful but missing features like tables. Overall
we were able to contribute substantial new features to the documentation system of
Envision.

We improved the diagram editor and made it more user friendly, we added code blocks
and tables and we introduced the possibility to integrate comments with all important
programming constructs.

As an additional feature we implemented Doxygen generation. All documentation fea-
tures of Envision can now be translated into appropriate Doxygen comments. As an
output we get a website describing all the modules, classes and method using the docu-
mentation we created within Envision.

We also implemented a basic integration with MIT’s Alloy analyzer. On the interaction
side with the Alloy library and the visualization of the generated instances we were
able to achieve a good working solution. On the model generation side we were able to
implement a working prototype which can be improved.

Altogether we improved the usability of existing documentation features and added
several new functionalities. We are confident that our contributions make the documen-
tation features of Envision even better and therefore may help programmers.

26

References

1]

Dimitar Asenov, Master’s Thesis, ETH Ziirich, 2011

Design and Implementation of Envision - a Visual Programming System

URL: http://www.pm.inf.ethz.ch/education/theses/student_docs/
Asenov_Dimitar/dimitar_asenov_MA_report

Jonas Trappenberg, Bachelor’s Thesis, ETH Ziirich, 2013

Supporting documentation artifacts in Envision

URL: http://www.pm.inf.ethz.ch/education/theses/student_docs/Jonas_
Trappenberg/BA_report_Jonas_Trappenberg

Andrew J. Ko and Brad A. Myers, Montréal, Québec, Canada, CHI 2006
Barista: An Implementation Framework for Enabling New Tools, Interaction Tech-
niques and Views in Code Editors

URL: http://dl.acm.org/citation.cfm?id=1124831

G. W. French, J. R. Kennaway and A. M. Day,

School of Computing Sciences, University of East Anglia, Norwich, Norfolk, 2012
Programs as visual, interactive documents

URL: http://onlinelibrary.wiley.com/doi/10.1002/spe.2182/abstract

The Larch Environment: Visual programming that works
URL: http://www.larchenvironment.com/

Doxygen: Generate documentation from source code
URL: http://www.stack.nl/~dimitri/doxygen/

Alloy: a language & tool for relational models
URL: http://alloy.mit.edu/alloy/

Code Contracts User Manual
URL: http://research.microsoft.com/en-us/projects/contracts/
userdoc.pdf

27

http://www.pm.inf.ethz.ch/education/theses/student_docs/Asenov_Dimitar/dimitar_asenov_MA_report
http://www.pm.inf.ethz.ch/education/theses/student_docs/Asenov_Dimitar/dimitar_asenov_MA_report
http://www.pm.inf.ethz.ch/education/theses/student_docs/Jonas_Trappenberg/BA_report_Jonas_Trappenberg
http://www.pm.inf.ethz.ch/education/theses/student_docs/Jonas_Trappenberg/BA_report_Jonas_Trappenberg
http://dl.acm.org/citation.cfm?id=1124831
http://onlinelibrary.wiley.com/doi/10.1002/spe.2182/abstract
http://www.larchenvironment.com/
http://www.stack.nl/~dimitri/doxygen/
http://alloy.mit.edu/alloy/
http://research.microsoft.com/en-us/projects/contracts/userdoc.pdf
http://research.microsoft.com/en-us/projects/contracts/userdoc.pdf

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Eigenstandigkeitserklarung

Die unterzeichnete Eigenstandigkeitserklarung ist Bestandteil jeder wahrend des Studiums verfassten
Semester-, Bachelor- und Master-Arbeit oder anderen Abschlussarbeit (auch der jeweils elektronischen
Version).

Die Dozentinnen und Dozenten kbnnen auch flr andere bei ihnen verfasste schriftliche Arbeiten eine
Eigenstandigkeitserklarung verlangen.

Ich bestétige, die vorliegende Arbeit selbstédndig und in eigenen Worten verfasst zu haben. Davon
ausgenommen sind sprachliche und inhaltliche Korrekturvorschldge durch die Betreuer und Betreuerinnen
der Arbeit.

Titel der Arbeit (in Druckschrift):

Enhancing the Visual Documentation Artifacts in Envision

Verfasst von (in Druckschrift):

Bei Gruppenarbeiten sind die Namen aller
Verfasserinnen und Verfasser erforderlich.

Name(n): Vorname(n):
Dinkel Sascha

Ich bestétige mit meiner Unterschrift:
- lch habe keine im Merkblatt Zitier-Knigge" beschriebene Form des Plagiats begangen.
- Ich habe alle Methoden, Daten und Arbeitsabldufe wahrheitsgetreu dokumentiert.
- Ich habe keine Daten manipuliert.
- Ich habe alle Personen erwahnt, welche die Arbeit wesentlich unterstitzt haben.

Ich nehme zur Kenntnis, dass die Arbeit mit elektronischen Hilfsmitteln auf Plagiate Gberprift werden kann.

Ort, Datum UnterSchrift(en) /
Sisseln, 28.10.2014 @% / /

Bei Gruppenarbeiten sind die Namen aller Verfasserinnen und
Verfasser erforderlich. Durch die Unterschriften biirgen sie
gemeinsam flr den gesamten Inhalt dieser schriftlichen Arbeit.

	Introduction
	Motivation and Goals
	Comments Framework
	Related Work
	Barista
	Programs as visual, interactive documents
	Doxygen
	MIT's Alloy Analyzer

	Design
	Diagram editor
	Source code blocks
	Tables
	Integration of comments
	Storage of comment nodes
	Visualization of integrated comments

	Doxygen Generation
	Mapping of documentation artifacts to Doxygen
	Supported Doxygen functionality

	MIT Alloy Integration
	Interaction with the Java based Alloy library
	Displaying the generated model images

	Instruction manual
	Diagram Editor
	Source code blocks
	Tables
	Integration of comments
	Doxygen Export
	Alloy model generation

	Implementation Details
	Diagram Editor
	Arrow drawing
	Color picker

	Tables
	Resizing of Tables
	The GridLayout and its style

	Integration of Comments
	CompositeNode and Attributes

	Doxygen Export
	Generate source file with comments
	Generating images of comments

	Alloy
	The AlloyIntegrationCLI

	Conclusion and Future Work
	Future Work
	MIT's Alloy Analyzer
	Recognition and visualization of standard patterns

	Conclusion

	References

