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Abstract

As programs keep getting larger, tools to develop, test, and debug them should also
provide more help. Existing tools often display runtime data in a textual way. Visualizations
in some use cases could help to grasp the data faster.

We introduce the concept of probes. A probe is an examination of program data and
data interactions at a specific statement in the program during runtime. Combined with
visualizations, probes should provide a source of information about a program. This infor-
mation could be useful in several development activities, such as debugging, testing, and
optimizing programs.

We implement a prototype of this concept in Envision. Envision is an environment which
uses visual and textual elements to represent code. We argue that such an environment can
optimally support probes with visualized data. With three examples we show possible use
cases and the utility of the introduced probes.

In the current implementation we can probe variables of primitive type and visualize
their data over time with bar-plots, scatter-plots, and array visualizations. While the im-
plementation is still limited, it provides a nice glimpse of how the concepts of probes work.
The probe concept is more general and can naturally be extended to many additional cases.
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1 Introduction

A debugger is an invaluable tool to find problems in program code, as well as to help testing
and understanding a program. One specifically helpful feature is the possibility to show values
of variables during runtime. This is essential to find a certain state which is invalid. Showing
values can also help to understand an algorithm, where its functionality is not obvious from the
code.

In existing tools, reading runtime values can be cumbersome for complex structures. Eclipse!
for example provides an indented list to show array data. To search for a specific field value in
an object array can thus quickly become a time consuming task, as each object entry has to be
expanded first.

Debuggers can inform a user about values in a single state of a program. However debuggers
often can not relate data between different states, or inside a single state. Therefore a user still
has to do manual work to get data histories or relations in the data.

In this project we explore the concept of probes. A probe is an examination of runtime
values of any amount of variables at a specific location in a program. The probe keeps a history
of the runtime values of the observed variables. We think that suitable visualizations of this
data can aid programmers in various activities.

We present a prototype implementation of the probe concept in Envision. Envision [2] is a
research project which aims to provide a next generation IDE. Envision uses visual and textual
elements to present code and can easily be extended with plug-ins. Instead of working on a
text file, Envision uses a tree model to store and edit program code. This model simplifies the
querying of information about the code. Considering this helpful model and the already visual
environment of Envision, we think that probes fit very well into Envision.

https://eclipse.org/
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2 Probes

2.1 Concept

A probe is inspired by a measurement in electronics. An electrical engineer can connect a probe
(a measurement device) anywhere in a circuit and measure various properties of the electrical
signal. Both a multimeter or an oscilloscope can be used as a probe. While the multimeter
can show a certain property of the signal at a certain time, an oscilloscope can show how this
property changes over time. Thus an oscilloscope can diminish the manual post processing
which might be needed when using only a multimeter.

We think in this analogy a traditional debugger is like a multimeter and a probe is more
like an oscilloscope. A probe “measures” values of variables at runtime. It can be created at
any statement of the program by issuing a probe command. The probe is then attached to
this specific statement. The probe stores a history of the values of the variables it measures.
Whenever the statement where the probe is attached to is executed, the history is updated.
With arguments to the probe command the user can specify which variables should be captured
by the probe and how they should be related.

Probes can capture data from various data structures existing in programs. A simple use
case is to use a probe to get a history of a variable of primitive type. But a probe also works with
arrays and index variables pointing into it. Even more interesting are complex data structures
which are interconnected such as linked lists, trees, etc. With a specific argument syntax a
probe could be created to track such structures. For example by specifying a start node and
the next field, a probe could be declared to track and visualize data of a linked list. In complex
structures there is often a lot of irrelevant data for a specific task, so a user should be able to
specify which data should be tracked.

The collection of data from a probe can be visualized in many meaningful ways. For some
cases, like the history of a variable, expressive visualizations can be chosen automatically by the
program. For other cases, like a complex data structure with interconnections, the user needs
to specify more information.

We think by using a probe a developer can focus on the data that is relevant to his task. In
existing tools like Eclipse a developer would need to look through all values and pick out the
relevant ones for his task. The developer would then still need to manually relate this data, e.g.
by using external tools. With a probe the developer can specify all relevant variables and get
a single view of this data and its relations. The visualization can help to read and understand
this data.
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The following section should demonstrate how the concept of probes can be translated into
practice.

2.2 Example use cases

In this section we show three selected use cases, which showcase how the current implementation
can be used to help our imaginary developers, Alice, Bob, and Carol to better understand their
programs.

2.2.1 Time measurements

Alice wonders about the complexity of her sorting algorithm. She already wrote a function
which measures the runtime for different input sizes. The function is shown in figure 2.1. Alice
planned to print the size versus the running time in a file and then create a plot. But recently
she found out about probes in Envision and she decides to try them now. She creates a probe of
the input size versus the elapsed time by typing the command: probe size elapsed. Once she
executes the program the plot of the runtime is automatically generated for her. She notices that
the time values are inconvenient to read as they are measured in nanoseconds. By adapting the
probe to divide the elapsed variable (probe size elapsed/1000000) she can quickly generate
a new plot which has the time value in milliseconds. The resulting plot is shown in figure 2.1.
By looking at the plot Alice can see that her implementation shows a quadratic runtime.

]{measureSortW 709.9151 . " .elapsed
567.932+ °
@lint size « 1000][5ize<maxSize][size +e 1000] .
intl] nums « getRandomArray(size) 425 949
long start « System.nanoTime() ‘
bubbleSort(nums) .
. 283.966+ °
long elapsed « System.nanoTime()-start .
[ES/start « 10 L
/ (141.9831 .

0 T T T T 1
0 4000 8000 12000 16000 20000

Figure 2.1: On the left we see a measurement function for the sorting function bubbleSort ().
On the last statement of the method we introduced a probe with the following command: probe
size elapsed/1000000, it is indicated by the small monitor icon. This probe will thus relate
the size to the execution time in milliseconds. Note that we had to introduce a dummy statement
on the last line, this is to make sure we have the correct value in the elapsed variable. On the
right side we have the plot of the probe which was generated by running the program.
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2.2.2 Error difference

Bob has to implement two different approximation functions for m. He received the following

two formulas: L1 1
_4.(1 3+5 7_|_...)
- _9. T _ 1 1 1-2 1-2-3
pi2Approx = 5= -( —1—3—1-3.5-1-3.5_7
Once he has implemented both approximation functions he has to decide which of the two
formulas converges faster. To test this, Bob wrote the function we show in figure 2.2. For
different amounts of iterations this function calculates the error of each approximation function.
Instead of manually comparing the values Bob creates a probe to visualize both errors using the
following command: probe iterations pi4Error pi2Error. The resulting plot of the probe
we show in figure 2.2. From this plot Bob can immediately see that the error of the pi2Approx

function decreases faster than the error of the pi4Approx function.

o

pi4Approx =4
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double pi4 « pi4Approx(iterations) .
double pi2 « pi2Approx(iterations)
) ) 0.684956
double pi4Error « Math.abs(pi4-Math.PI)
double pi2Error « Math.abs(piZ-Math.PI)
[Eint dummy « (int)pi4Error 0.4566371 ‘
0.228319- ..
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Figure 2.2: In this example we want to find out which approximation function converges in
less iterations. The piApprox function calculates the absolute approximation error for each
amount of iterations. We introduce a probe to plot both errors with the following command:
probe iterations pi4Error pi2Error. During the execution the plot is filled with the error
values. The legend indicates the colors of the values. Note that we had to introduce a dummy
statement to assure that we fetch the correct value of the pi2Error variable from the debugger.

2.2.3 Algorithm understanding

Carol is training for her first technical interview. To start her practice session she writes a
binary search function. The function is shown in figure 2.3. She then tests the function with
several test cases and notices that in some cases the function does not return. By just inspecting
the code she cannot determine the cause of this problem. She introduces a probe involving the
array and the three indexes pointing in the array (command: probe A imin imid imax). From
the probe plot shown in figure 2.4 and figure 2.5 she sees that after the third iteration of her

4
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code the plot does not change. From this she can identify which index is wrongly updated and
fix the bug in the code.

Bh (il A
|nt]-[b|nary_search]—{int[]

@ imax=imin|

int imid < middle(imin imax)

10| 12| 14| 16| 18| 20| 22| 24| 26| 28

N PN PN
imin imid imax

key imin imax
int int int

Figure 2.4: The plot of the A array with the
corresponding indexes after the second loop it-
eration of the binary_search method.

<& imid
<4 [Alimid] < key]
imin < imid+1 i imax < imid-1 10| 12| 14| 16| 18| 20| 22| 24| 26| 28
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N Y, imid
Figure 2.3: Here we show a binary search Figure 2.5: The plot of the A array with the

method with a slight bug related to imin.
We introduce the probe: probe A imin imax
imid at the first if statement. On the right side
we see the plot of this probe in the second and

corresponding indexes after the third loop iter-
ation of the binary_search method. Any fur-
ther iterations will result in the same plot, with
imin at the same position. This leads us to the

third iteration. conclusion that imin is incorrectly updated.

2.3 Features of the prototype

The prototype implementation of probes in Envision is still quite limited in functionality. It
only supports probing of multiple variables of primitive type and probing an array variable
with multiple index variables. We describe how to interact with the current implementation of
probes in section 2.3.1. The currently available visualizations are listed in section 2.3.2.

2.3.1 Interaction

To create a new probe one has to enter the probe command, with any number of arguments. The
arguments can be variable names, numbers, or a combination thereof in a simple calculation.
In figure 2.6 and figure 2.7 we show two examples of probe commands.
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Figure 2.6: To visualize how a binary search
method works we enter the probe command in
the orange command prompt. As arguments
we pass the array name (A) and the indexes
(imin, imax, imid), which point in the array.

o1 Sont maxSize
]{measure o) int

Efint size « 1000|kize<maxSize|ize +« 1000
int[] nums « getRandomArray(size)
long start « System.nanoTime()
bubbleSort(nums)
long elapsed < System.nanoTime()-start
start « 10

\—[probe size elapsed/lOOOOOO]—/

Figure 2.7: To test the execution time of an al-
gorithm, often different sizes are measured and
plotted. With a probe we can generate a plot
of the array size versus the elapsed time for an
algorithm (bubbleSort). With a simple calcu-
lation we can adapt the measured time to be
plotted in milliseconds instead of nanoseconds.

The probe command can be confirmed by pressing Enter. Envision will check if all the
specified variables are declared in this region. If this is the case a small monitor icon ([E]) will
indicate that there is a probe on this statement, additionally a plot overlay will appear. During
the execution of the program the runtime values of the probed variables are inserted in the plot.

2.3.2 Visualizations

Currently there are three different visualizations which are chosen depending on the variable

types:

1. For a single variable a bar plot shows its history.

2. For an array we show the array and its contents, additional variables are interpreted as

indexes into the array.

3. For multiple scalar variables we show a scatter plot.



3 Implementation

This chapter presents important aspects of the implementation of the debug facilities we in-
troduced in Envision. We first show a general overview in section 3.1. For the communication
between Envision and the Java virtual machine (JVM), where the debuggee process is running,
we chose to use the JDWP protocol'. We motivate this choice and explain the implementation
of the protocol in section 3.2.

3.1 Overview

As a prerequisite for debugging we need the ability to compile and run a program. For this we
introduce the corresponding classes as we show in figure 3.1. Figure 3.1 also shows the most
relevant classes for developers of other plug-ins. In the following subsections we will present
each of these classes separately. For users we introduced the commands compile, run, and
debug so that they can directly take action from inside Envision.

JavaExport OODebug |

JavaExporter
exportTree()

JavaCompiler JavaRunner JavaDebugger

uses uses
compileTree() runTree() <—=="-1 debugTree()

| AN
juses :Event callback

DebugConnector

Run Program

SL

& JDWPACo/mrmﬁivcation

Figure 3.1: Overview of the relevant classes and their interactions in the debug plug-in. Note
that the JVM and the interactions with it only exist during execution.

Yhttp://docs.oracle.com/javase/7/docs/platform/jpda/jdwp/jdwp-protocol.html
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3.1.1 JavaCompiler

The JavaCompiler class provides a compileTree() function, which will trigger a compilation
of the current Envision tree. It uses the JavaExporter class to export the Envision model to
Java code. The exported code is compiled by using the CommandLineCompiler class, which calls
the javac compiler with the help of the QProcess class. The feedback from the compiler is
parsed and displayed at the correct node’s visualization. The compileTree() function returns
a CommandResult object to notify the caller if everything went successfully.

3.1.2 JavaRunner

The JavaRunner class is responsible for running a compiled program. The runTree () method
is the main interaction interface of this class. It assures that a compiled version of the program
exists. The MainMethodFinder class helps to find the file which contains the main method. The
name of the main file is then passed as an argument to the java command, which is executed
in a QProcess wrapper. The output of the running process is redirected to a ConsoleOverlay.

3.1.3 JavaDebugger

The JavaDebugger class is a core part of this plug-in. It handles the interactions between the
user and the debugger. The JavaDebugger class relies on the DebugConnector class which
handles the communication to the JVM. To simplify the implementation most of this commu-
nication is synchronous, however there are also some events which are raised by the VM, like
e.g. when a breakpoint is hit. We first explain the managing of probes and then the interaction
between the DebugConnector and this class in separate subsections.

Probe management

When a user creates a new probe the JavaDebugger first checks if all the entered variables exist
at this location. If that is the case, all relevant information for the probe is stored in a struct
called VariableObserver. It contains the following details:

e For each variable the details which are needed to fetch the value from the debugger.

e For each variable a transformation function which transforms the variable values to the
values expected by the probe. For example if the user enters x+10 the transformation
function for the variable with name x would be value + 10.

e A function which handles how the values are visualized.

To know which nodes have an attached probe, we introduced a map between nodes and
VariableObservers. At the probe location a breakpoint is added. Once a breakpoint is hit the
handler function checks if there is a VariableObserver at this location. If there is an observer
all the values of it are fetched and transformed. Then the stored handling function is called
with the new values as an argument.
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JavaDebugger and DebugConnector interaction

The interactions between the JavaDebugger class and the DebugConnector class is mostly
synchronous. That means the debugger calls a method on the connector class which blocks
until the response is back from the VM.

For communication from the VM to the debugger we introduced a different mechanism. As
the DebugConnector is decoupled and independent of the JavaDebugger, the JavaDebugger
has to register a callback for events. Once such an event happens the DebugConnector calls
the registered callback with the event info as argument. The JavaDebugger then takes action
for this event. With our probes mechanism we introduced an auto resume functionality, so that
we only stop at a breakpoint for a short moment to fetch the values for the probe. If the user
did not register a breakpoint at the same location we will just resume from the probe. It could
however be that the user used a single step to reach the location in which case we do not want to
resume automatically. In such a case 2 events happen at the same time and they have different
opinions on whether they want to resume. To handle such cases properly we introduced an
agreement protocol, which assures that the action expected by the user happens.

3.2 JDWP protocol

3.2.1 Debug protocol choices

To connect to a java debugger programmatically there are several options. The documenta-
tion from Oracle? shows an overview of those possibilities. We outline an evaluation of each
possibility in the following subsections.

Java Debugger (JDB)

JDB is a console application to debug Java programs. To interface with it from a program one
would need to parse the console output. However the format of this output is not defined and
it is not clear how to distinguish the output from the debugger and from the program which
is debugged. Additionally it limits the possible features to the features offered by JDB, which
might not be as complete as the other possibilities. One advantage of this approach is that
it should be easy to quickly have some running code, however the maintainability might lack.
Overall we decided that the disadvantages outweigh the advantages for this approach.

Java Debug Interface (JDI)

The JDI is a set of Java APIs, which provide useful information about the JVM. Those APIs
would simplify the implementation of a debugger written in Java. Internally JDI uses the JDWP
protocol to communicate with the JVM.

Envision is written in C++ thus we would need to either wrap the Java program into a
native interface or write some communication protocol to communicate between Envision and
the Java program. However both approaches are offered already: the JVMTI offers a native

2http://docs.oracle.com /javase,/7/docs/technotes/guides /jpda/architecture.html
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interface to the VM and JDWP is a protocol to communicate with the VM. Thus we decided
to not use JDL

JVM Tool Interface (JVMTI)

The tool interface is a set of native, i.e. C/C++, APIs. A C++ API would certainly be helpful
for our project. Yet some implementation details render this approach uninteresting for us.
One has to provide an agent which will be called once the JVM is started. This means the code
will execute in the VM process. Thus we cannot easily have the code running in the Envision
process. Having separate processes would not work for our purposes, as Envision needs the
information from the debugger. Additionally this would mean that the debugger competes with
the VM and thus the debuggee for the resources. We did not find those problems with the
JDWP approach and therefore decided to not further investigate the JVMTI.

Java Debug Wire Protocol (JDWP)

The JDWP protocol defines the interface between a debugger front end and the VM back end.
It offers clear separation between the debugger and the debuggee. The protocol has a clear
documentation. As it is a network protocol we can rely on known C++ and Qt APIs and do
not have to add other APIs, like for the JVMTI. The decoupling even facilitates to debug a
remote application. On the downside implementing a network protocol brings its own issues,
e.g. incomplete data handling, etc. We believe that the advantages outweigh the network issues.

For the reasons stated above we think that JDWP outperforms the other choices so we
decided to use this protocol to implement our debugger.

3.2.2 Implementation of the protocol

The JDWP protocol® specifies many message types in different formats. We want to parse
them with the goal that it should be as easy as possible to support additional messages from
the protocol. We achieved this by implementing a helpful framework which makes it possible
to partially generate the code for the messages from the documentation.

We introduced a MessagePart class which represents a part of a message or even a whole
message as defined in the protocol. The class serves as a base class for all messages, however
as each command and reply have a fixed set of fields at the beginning we introduced the
corresponding Command and Reply classes as bases for clients. The MessagePart class defines
the reading and writing operators for the QByteArray data from the network. Each message
then consists of a set of MessageFields, which register a reader and a writer function in the
containing MessagePart. When the read or write operator on a MessagePart implementation
is called, all registered reader or writer functions are executed. With this abstraction we achieve
that a specific message implementation only has to specify the fields the message contains and
nothing else.

3http://docs.oracle.com /javase/7/docs /platform /jpda/jdwp/jdwp-protocol.html
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To implement the version info reply from the VM as shown in the JDWP documentation®
we can copy the reply data table to a text editor which shows tabs between the columns. We
then search with a regular expression for the following: ([~\t]+)\t(["\t]I)\t(["\n]l+)\n. The
first group matches the type the second group the name and the third the description of the
field. If we do not need the documentation we can replace the matches with the following
expression: MessageField<\1> \2{&VersionInfo::\2, this};\n. After this replacement we only
have to adapt the types to actual types. It should be fairly easy to make this process even more
automated with a script, which automatically replaces the types by the correct C++ types. The
code for the reply in listing 3.1 should demonstrate the ease of implementation of a message.
Note that we only need the destructor for a correct vtable placement.

struct OODEBUG_API VersionInfo : public Reply {
virtual “VersionInfo() override;

MessageField<QString> description{&VersionInfo::description, this};
MessageField<qint32> jdwpMajor{&VersionInfo::jdwpMajor, this};
MessageField<qint32> jdwpMinor{&VersionInfo::jdwpMinor, this};
MessageField<QString> vmVersion{&VersionInfo::vmVersion, this};
MessageField<QString> vmName{&VersionInfo::vmName, this};

Listing 3.1: Code of the version info reply

* http://docs.oracle.com /javase/7/docs /platform /jpda/jdwp /jdwp-protocol. html#IJDWP_VirtualMachine_Version
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4 Related Work

4.1 Visualizing data structures

Visualizing data structures and objects is an interesting field. For some objects it is clear how
the visualization should look like, for others we have more flexibility, and for some we might
even ask the user how to represent them. For example for a color object you can show the color.
Other objects like arrays may have multiple visualizations which make sense, like a histogram,
or just a plain visualization of the array. On the other hand for user defined objects it can
be harder to find a predefined scheme, thus it might be necessary that the user specifies the
visualization.

B. Alsallakh et al. [1] designed a plug-in to show array contents and collections data in a
visual way. With this plug-in the user can choose to show the data in a tabular view, a histogram,
or in a line chart. Compared to the existing data presentation in Eclipse, the visualization of
the data in this plug-in is easier to overview and interact with. Similar to this plug-in, our
prototype can visualize an array in a plot. Additionally our probe prototype can show relations
of indexes to the array.

Zeller et al. [10] created the GNU data display debugger (DDD). DDD can visualize runtime
data in various ways. It can display multidimensional arrays in plots and visualize dynamic data
structures such as trees. While DDD offers a wide variety of visualizations the tool is stand
alone and not integrated in a development environment. We think that an integrated tool could
improve the ease of use. It might even encourage users to use the debugger more often as one
does not have to switch between different environments.

Rozenberg and Beschastnikh [9] implemented a templated approach to visualize arbitrary
objects. The user can specify the visualization of an object by using HTML code with CSS
templates. This makes it possible to visualize a locale with a flag, a linked list with arrows
between boxes and more. While this provides great possibilities it is not that effortless as users
have to write their own HTML code.

Larch [7] is an IDE for Python which combines the code and the execution result in a
visual canvas. The idea is that each class can implement a __present__ method which is a
visual equivalent to the to string method __str__. The __present__ method is used to visualize
the object during the execution. Due to python’s dynamic nature the visualization adapts
simultaneously with a code change.

12
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4.2 Visualizing temporal changes

While visualizing data in a certain state of the execution can be helpful, it might also be
interesting to see how the data evolves over time. For example if we know a variable should be
monotonically increasing and we can just plot its value during the execution, we can quickly
see if this is really the case.

Beck et al. [3] made an Eclipse plug-in which can show a history graph of global variables and
fields. The plot is attached in a small form to the variable declaration but can be extended to a
more detailed view. It shows an overview of the variable history, the minimum and maximum
values, and the number of read accesses for each value. The probe implementation we have in
Envision can do a very similar thing, except that our prototype does not store the number of
accesses to each value. Probes additionally enable a user to relate and plot different variables
against each other. With simple calculations the plot of the probed variables can even be
tweaked.

4.3 Visualizing relations

Instead of just viewing a certain state or how it evolves over time, it is often even more important
to see how values relate to each other. Consider an algorithm to sort an array which uses several
index variables. Here we are not only interested in how the array values evolve but also how
the indexes move on the array.

The jGRASP IDE [8] has a viewer canvas, which can show visualizations of data. For the
array and collections viewer a user can add index expressions. JGRASP can animate the changes
to those index expressions by automatically stepping through the program. This can help novice
programmers which are trying to understand how a certain algorithm works. Additionally it
could aid finding a bug for an experienced programmer.

The concept of viewers in jGRASP has some similarities to probes. With probes one can
visualize arrays and indexes pointing to it as well. While the viewers provide selectable visual-
izations, they seem to only support this very specific use case of data relation. With probes we
want to have the possibility to relate any data.

13



5 Future work

5.1 Call stack visualization

Currently when a breakpoint is hit we get an indication of this event. However it is not possible
to see from where the execution reached this point. In existing tools a call stack is often a
clickable list of previous statements. In Envision we could re-arrange the methods to visually
present the call stack. This could behave similar to the call stacks in Debugger Canvas [6].

5.2 Support for multi-threaded programs

Once we have a suitable call stack presentation we should extend it to support programs with
multiple threads. Especially when threads have the same execution path a suitable visualization
might help to detect possible race conditions. Probes could be enhanced to render data from
multiple threads.

5.3 Improve probe implementation

As we have explained in section 2.3 the current probe implementation is still quite limited. It
only supports primitive types and arrays and automatically uses default visualizations.

The prototype implementation should be extended to handle and visualize heap structures.
The command syntax should allow a user to declare probes for those complex structures. For ex-
ample a new command could look like this: probe diagram head:*.next show:*.value,*.name.
This command specifies that the user wants a diagram of a linked list starting from the node
head and following through the next fields. The show argument specifies that only the value
and name field of the node should be contained in the diagram.

Instead of always using a default visualization an improved implementation should enable a
user to specify a different visualization.

5.4 Working set view for debugging

Code Bubbles [4, 5] and Debugger Canvas [6] present the working set view in a visual context.
We can imagine a working set view with attached probes. Such a working set should also
store additional information. For example if we have an approximation function we could store
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certain maximum error values for each iteration in the working set. If a user tries to optimize
the runtime of the approximation function the user can use the working set to check if the errors
are still below the bound. With such a working set this could conveniently be done using the
plot of the probe where the maximum error would be shown as a fixed line and the actual values
as dots.

5.5 Comparing data between program versions

With probes we can relate data from a single execution of a program. It could be interesting
to compare the data from one version of the program to another version of the same program.
This could help to experiment with parameters to an algorithm. One could compare how those
parameters influence the output in a unified plot. Additionally it might help to pinpoint the
version which introduced an undesired behavior with the help of a version control system.

5.6 Support for multiple processes

For now we just support running code from a single main method. For a project with multiple
main methods, for example a client server project, there is no way to select which main method
to run. To support such a project we would need a map from methods to the running processes.
Once this is in place it would make sense to have a separate terminal overlay for each process.
This implementation might also allow to start a process multiple times concurrently. Regarding
probes and concurrently running processes there should be a way to specify which probe belongs
to which process. A possible solution for this could be to have a working set per process, which
contains all probes.

5.7 Plotting library

In the current state we implemented the plotting by using primitive drawing operations directly
on an overlay. By using a plotting library we possibly get greater flexibility in how our plots
look at less implementation cost. One license compatible Qt plotting library is Qwt!.

"http://qwt.sourceforge.net/
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6 Conclusion

In this project we aimed to explore and experiment with a visual debugging interface. We
started by introducing basic debugging capabilities in Envision. Once this was in place we
experimented with the concept of probes. We implemented a probe prototype which can be
used in Envision.

We presented a well thought-out concept for probes. We have explained how probes for
programs are similar to oscilloscopes for electronic circuits. With example use cases we have
shown how our prototype implementation can be valuable to developers to better understand
a program.

We outlined many ideas on how to extend our current work. By implementing those ideas
we think that Envision can be a very helpful tool for developers for various activities in a
development cycle. Especially probes for heap structures are a very interesting topic to explore
further.
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Appendix A

Debugger Manual

Here we list the available debugger interactions.

Toggle breakpoint F8

Continuing from a breakpoint F6

Single stepping CTRL + F6

Variable tracking F12 (add a value to the plot every time the variable is referenced)
Add a probe Select a statement hit ESC enter probe and some variable name(s)
Remove a probe Select the statement where the probe is and hit ESC enter probe -

Start debug session ESC and enter debug
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