
ETH Zürich

Master’s Thesis Report

Static Checking of TouchDevelop
Programs against Web Service

Specifications

Author:
Pascal Zimmermann

Supervisor:
Lucas Brutschy

Prof. Dr. Peter Müller

Chair of Programming Methodology
Department of Computer Science

July 16, 2014

2

Abstract

Mobile devices such as tablet computers and smartphones are becoming
increasingly popular. With the TouchDevelop programming environment,
Microsoft Research is exploring how to further benefit from the computing
power of mobile devices. With an easy to use, touch-optimized interface,
TouchDevelop is especially targeting lay programmers and students. The
TouchBoost project aims to help TouchDevelop programmers write better
code by employing various static analyses that identify and report possible
programming errors.

Many real programs do not work stand-alone; they reuse code and access
data. The diversity of todays computing devices fosters the development
of software systems that run in their own environment and are remotely
accessed over a network. Such a web service and a program typically com-
municate using HTTP.

We propose a static analysis for programs that send a request to a web
service using an URL. The URL identifies the web service and conveys pos-
sible input parameters. In a program, an URL is just a string. The specifi-
cations of the called web service impose constraints on the value of the URL
string. Hence, knowledge about the possible values of URL strings is crucial
for our analysis.

We formalize a predicate logic on strings. A so-called “Split expression”
provides a predicate in higher-order logic that divides a string into two
substrings and applies a predicate to both substrings. We define the abstract
semantics of the Split expression and implement an algorithm that divides
the employed string domain at a given delimiter. The split operation is able
to extract the string representation of parameters passed to the web service.
The parameters however, need not necessary be strings. We develop an
extension to an existing string analysis with the relational information of
objects and their string representation.

The web service specifications give guarantees about the returned strings.
Often, the returned string is structured hierarchically. We design structural
annotations for string values to collect information about the represented
format (e.g., JSON, XML) and fields that are guaranteed to exist if the
string is converted to the appropriate object.

3

4

Contents

Abstract 3

1 Introduction 7

2 Background 11

2.1 TouchDevelop . 11

2.2 Static Program Analysis . 12

2.3 Abstract Interpretation . 13

2.4 TouchBoost . 14

2.5 Web Services . 14

2.6 Bricks . 15

2.7 Maybe Contained Character Analysis 17

3 Analysis 19

3.1 Expressions . 20

3.2 Relational Bricks . 22

3.2.1 Symbolic Variables . 24

3.2.2 Abstract String . 25

3.2.3 Abstract Strings with Maybe Contained Character Do-
main . 27

3.3 Split Expressions . 29

3.3.1 Split Expression as a Predicate 31

3.3.2 Forall-Splits Quantifier 31

3.4 Split Expression in the Abstract Domain 32

3.4.1 Introducing the Abstract Evaluation of Split Expressions 33

3.4.2 Split Operation on Relational Bricks 35

3.4.3 Termination of Split Expressions 41

3.5 Web Service Specification . 42

3.5.1 Intermediate Representation of Web Service Specifi-
cation . 43

3.5.2 Derived Pre- and Postconditions 46

3.6 Structural Annotations for String Values 49

5

6 CONTENTS

4 Evaluation 53
4.1 Results . 55
4.2 Discussion . 58

5 Related Work 63

6 Conclusion 65
6.1 Future Work . 66

Chapter 1

Introduction

TouchDevelop is a programming environment developed by Microsoft Re-
search. TouchDevelop allows users to create applications for their mobile
devices with a user interface that is optimized for development directly on
the device using a touch screen; code can be built using predefined blocks
which greatly reduces the need for keyboard inputs. TouchDevelop comes
with an API that provides a lot of functionality, such as reading the devices
sensor data, establishing Internet connections, and printing graphical and
textual output. Furthermore, the only requirement to run TouchDevelop
is a modern web browser, which means that TouchDevelop scripts can be
executed on many different devices. All those factors make TouchDevelop
attractive for programmers without much programming experience.

The barrier to publishing TouchDevelop scripts is very low, leading to po-
tentially many publications by inexperienced programmers. Program anal-
ysis can help programmers writing correct code by pointing out possible
mistakes. Currently, the Chair of Programming Methodology at the ETH
Zürich is working on TouchBoost, a toolbox providing various static analyses
that will help TouchDevelop programmers write correct scripts by finding
and warning about possible erroneous behavior. Once deployed, TouchBoost
should be able to improve the overall quality of published TouchDevelop
scripts.

A web service is a software system that interacts with a client program
remotely over a network. Since they are operating in their own environment,
web services are not limited to the same resources as the calling application
is. Often, web services are used to request specific information from a large
set of data. Analyzing a program that communicates with a web service
comes with different challenges than analyzing a program that uses a tradi-
tional library that is executed in the same environment as the program.

Recent sales statistics highlight the importance of mobile devices. Statis-
tics published by Gartner [17], [18] show a worldwide shipment of 315 967 516
PCs and a worldwide sale of 195 435 004 tablets in 2013. The statistics also

7

8 CHAPTER 1. INTRODUCTION

1 var location := senses Ý current location

2 var base := "http :// api.nytimes.com/svc/events/v2/listings.json

?"

3 var position := "ll=" � location Ý latitude � "," � location Ý

longitude

4 var key := "&api -key=" � data Ý key

5 var url := base � position � key

6 var response := web Ý download json(url)

7 if (not response Ý is invalid)

8 var numEvents := response Ý number("num_results")

9 var events := response Ý json("result")

10 var i := 0

11 while (i < numEvents)

12 events Ý at(i) Ý string("event_name") Ý post to wall

13 i := i + 1

Figure 1.1: Motivating example.

show a significant rise in tablet sales (68%) and a decline in PC shipments
(-10%) from 2012 to 2013. Even without adding Smartphones to the equa-
tion, those numbers emphasize the significant contribution of mobile devices
to the number of todays computing devices. As such, the development of
platform independent web services, and the research of new, mobile-friendly
programming environments such as TouchDevelop is promising.

This work contributes to the TouchBoost toolbox by providing an anal-
ysis that reasons about the communication between TouchDevelop scripts
and web services.

There are some important differences between web services and regular
libraries that an analysis must be aware of. Firstly, the functionality im-
plemented by the web service is not directly linked in memory. Instead,
communication is done over a network connection and follows correspond-
ing protocols such as HTTP. At any time, there is no guarantee that the
web service is available, which means communication may potentially fail.
Secondly, the sent messages are not objects that are checked by the type sys-
tem, but rather string values conveying the semantic information. Hence,
our proposed analysis is heavily dependent on statically knowing the values
a string in the program can take.

Figure 1.1 shows code written in TouchDevelop with a call to a method
provided by a web service. When executing, the code is supposed to retrieve
and display a list of events that are held nearby. The event listing is provided
by the web API of The New York Times [1]. The web service expects the
latitude and longitude coordinates being passed to the web service as part of
the URL string. The example program retrieves the coordinates by asking
the device for its current location. The coordinates are passed to the web
service as a key-value pair in the query part of the URL, i.e., after the

9

question mark.
The actual communication with the web service is done when the download

json method is called in line 5. This method parses the textual response
of the web service as a JSON object. The communication with a web ser-
vice may fail, returning an invalid response, because the web service could
be unavailable. Statically, there is no way to guarantee the validity of the
response.

Inside the if-statement, in lines 7 to 12, the JSON-object response is
valid. Nonetheless, the validity property by itself cannot guarantee that
the fields num results or result exist in the JSON-object. Conservatively,
a static analysis can give warnings that the keys might not exist, but the
specification of the web service could provide more precise information.

The specification of the web service provides contracts on how to com-
municate with the web service. In the example, an analysis can find out
that the event-listings method of The New York Times web API is accessed.
Suppose the contracts of this method require the caller to provide a location
in New York as a tuple of numeric values that represent the latitude and the
longitude. Suppose that, if those preconditions are met by the caller, the
service guarantees that a string is returned that represents a JSON-object
containing the integer field num results and the field result. Given those
contracts of the web service and the program code in the example it is pos-
sible to deduce that numEvents takes a valid integer value and that the value
of events is a valid JSON object.

Our work makes the following contributions:

� We propose an augmentation of an existing string analysis to keep
the relation between the value of (sub)strings and the value of the
arbitrary typed object they represent.

� We define a format and and intermediate representation for specifica-
tion of stateless web services.

� In the abstract interpretation framework, we propose a domain of
structural annotations for string values.

� We design and implement a static analysis for the TouchBoost toolbox
that checks TouchDevelop programs against web service specifications.

� We are the first to formally capture the semantics of web service spec-
ifications in regular programming languages.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Background

The purpose of this chapter is to prepare the reader for the analysis that is
described in Chapter 3. The analysis contributes to the TouchBoost project,
which is introduced in Section 2.4. TouchBoost provides various static anal-
yses (Section 2.2) that are designed in the abstract interpretation framework
(Section 2.3) for programs written in TouchDevelop (Section 2.1). The goal
of the proposed analysis is to receive reasonable precise information about
values involved in communication with web services. Web services are intro-
duced in Section 2.5. A program communicates with the web service over
HTTP. Specifically, our analysis investigates the constraints the web service
specifications put on URL strings and the response. The approach depends
on statically knowing the values of strings. In Section 3.2, we propose an
augmentation to the Bricks string analysis which is introduced in Section
2.6. The augmentation utilizes the Maybe Contained Character analysis
introduced in Section 2.7 to improve the precision of the analysis.

2.1 TouchDevelop

TouchDevelop [22] is an imperative object-oriented programming language
developed by Microsoft research. The language is strongly and statically
typed, while type inference is applied on local variables. TouchDevelop
comes with a browser-based development environment [2] also provided by
Microsoft. The development environment allows users to create programs,
publish them, and execute them. Being run in the browser, TouchDevelop
can be used on almost any device. Its interface is especially designed for de-
velopment on touchscreens, with ease of use in mind. As such, TouchDevelop
is not targeting professional programmers, but tries to appeal especially to
hobby programmers and students.

TouchDevelop comes with a rich API that provides high-level methods
for various tasks. Amongst other things, the TouchDevelop API provides
drawing functions, functions to access to sensor data, functions to access to

11

12 CHAPTER 2. BACKGROUND

media stored on the device, and functions to receive user input. In this work
we are interested in the functions of the TouchDevelop API that communi-
cate with software systems over a network.

Each published TouchDevelop script is publicly available via Microsoft’s
cloud service. TouchDevelop programmers also have the possibility to export
their scripts and upload them in the Windows-, Android-, or iPhone/iPad
app store. We evaluated the analysis that we describe in Chapter 3 against
various real scripts.

2.2 Static Program Analysis

As an imperative programming language, TouchDevelop programs consist
of a sequence of statements that each potentially alter the state. In return,
the behavior of each statement is dependent on the state. For example, the
statement 1 / x depends on the value of x at the time of the statements
execution. Consequently, some states lead to erroneous execution of state-
ments; if such a state is reached, the program has a bug. For example, if the
state of a program sets the value of x to 0 just before the statement 1 / x

is executed, the program will crash. The ultimate goal of program analysis
is to point out bugs in the program code.

Opposed to testing or dynamic program analysis, which aims to find bugs
in the program by executing it with concrete input values, static analysis
computes the execution of the program without actual input values. Hence,
static analysis can provide information about the behavior of a program for
all possible executions of the program instead of only a limited number of
executions that can be tested dynamically. However, in most programs, a
state can take a very large set of values and static analysis usually needs to
over approximate the state. Hence, a static analysis often has to sacrifice
precision in favor of soundness.

An analysis is sound if it gives a warning about every bug in the pro-
gram and precise if every warning reveals a genuine bug. Both properties
are important for the usefulness of the analysis but are very hard to meet
simultaneously. Note that an analysis that reports a lot of false errors, while
revealing all genuine bugs, may not be useful to the user because the genuine
bugs are hidden in the flood of false bug reports.

In this work we contribute to the TouchBoost project which depends on
the static analyzer Sample. The intermediate representation of programs
– in our case of TouchDevelop programs – is a control flow graph. Each
node in a control flow graph contains either an assignment statement or a
condition. Nodes containing a condition have two successors that depend
on the execution of the condition. All other nodes, except for the last node
in program execution, have one successor. Each node has an entry and
an exit state. The control flow graph is not a tree; some statements in

2.3. ABSTRACT INTERPRETATION 13

a program may get looped over and executed multiple times. The static
analyses compute a fixpoint of the states.

2.3 Abstract Interpretation

Abstract interpretation was developed by Cousot and Cousot [11]. It al-
lows mathematical reasoning about programs without executing them, and
provides a static analysis framework. Analyses that fit into the abstract
interpretation framework are modifiable, because the abstract domains that
represent values in the state can be added, removed or exchanged depending
on the needs. The ASTRÉE analyzer, developed by Cousot et al. [12], is a
famous static analyzer based on abstract interpretation for the C program-
ming language.

For each statement, abstract interpretation makes an over approximation
of all possible input and output states. The set of all possible abstract
states form a lattice. In a lattice, every two elements have a unique smaller
element and a unique larger element. Hence, in abstract interpretation two
important operations on states S1 and S2 are defined: The least upper bound
operator t and the greatest lower bound operator u.

Programs in the static analyzer Sample are represented as a control flow
graph. Each node in the control flow graph has an entry state, that is, the
state of the program before the statement in the node is executed, and an
exit state. At each node, the abstract interpretation technique computes
the transition from the entry state to the exit state by applying the abstract
semantics imposed by the statement. If a node has multiple predecessors,
e.g., the first statement after an if-statement, the input state is computed
as the least upper bound of the exit states of all predecessors. This ap-
proach ensures that each abstract entry state is an over approximation to
the concrete entry state.

Statements might be executed more than once in a single program execu-
tion. Computing the abstract state transition only once for each statement
does not guarantee us to cover at least all possible concrete states. Abstract
interpretation computes a fixpoint using the least upper bound operator on
the state after one iteration and the next iteration. However, such a fixpoint
computation can take a long time or might in some cases not terminate at
all. A widening operator O speeds up the fixpoint computation. After a
certain number of iterations, the widening operator over approximates the
state after the last iteration. To speed up the fixpoint computation, the
widening operator generally sacrifices precision.

14 CHAPTER 2. BACKGROUND

2.4 TouchBoost

The analysis described in Section 3 is part of the TouchBoost project which
provides various tools to analyze programs written in TouchDevelop. Touch-
Boost utilizes an analyzer called Sample (Static Analyzer for Multiple Lan-
guagEs) which is defined in the Abstract Interpretation framework [11].
Sample is being developed by the chair of programming methodology at the
ETH Zürich.

Because TouchDevelop is especially targeting programmers without much
programming experience, and because TouchDevelop scripts are so easily
published, many of the published programs contain bugs. TouchBoost aims
to help programmers write correct code by providing various static analysis
tools that warn programmers about possible mistakes.

Currently, the TouchBoost tool suite contains various analyses for string
values, for numerical values, and for the special invalid value which is sim-
ilar to Java’s null-value, albeit not exactly the same. Other Master’s the-
ses completed at the chair of programming methodology also contribute to
TouchBoost. Raphael Fuchs [16] developed a backwards analysis in the ab-
stract interpretation framework to decide whether a warning by the forward
analyses is genuine. Daniel Schweizer [21] developed an analysis that over
approximates the cost of loops in a TouchDevelop program.

TouchBoost has been deployed as a plugin to the TouchDevelop pro-
gramming environment.

2.5 Web Services

The term web service architecture is defined by the World Wide Web Con-
sortium [6]. They define a web service in the following way:

Definition: A Web service is a software system designed to sup-
port interoperable machine-to-machine interaction over a net-
work. It has an interface described in a machine-processable for-
mat (specifically WSDL). Other systems interact with the Web
service in a manner prescribed by its description using SOAP
messages, typically conveyed using HTTP with an XML serial-
ization in conjunction with other Web-related standards.

The definition is a bit strict as it states that a web service must provide
its specification in a machine-processable format, which is often not pro-
vided. Especially more recent stateless RESTful web services – a term and
architectural style introduced by Fielding and Taylor [14] – provide their
specification in a human-readable but not machine-processable format. A
key characteristic of the REST architecture is, that the client has to manage
state – the response of a RESTful web service should not depend on vari-
ables that are not provided by the client. The two main benefits of stateless

2.6. BRICKS 15

web services over stateful web services are improved visibility, because single
requests can be observed seperately, and scalability, because the web service
does not have to allocate resources on saving the state.

Web services have various benefits over traditional libraries:

� They are executed in their own environment and do not use the same
resources as the client. This makes them especially useful for mobile
devices (which are becoming the most commonly used computing de-
vice [22]), because their resources are often limited in favor of mobility
and less power consumption.

� Being decoupled from the client code and running in their own en-
vironment, web services can actually be accessed independent on the
platform and the language the client code is written in. Web services
do not require the users to setup their system in a specific way. Hence,
web services generally gain a greater audience than their traditional
counterparts.

� They completely hide the implementation of their functionality. The
executable binaries of a web service need not be available. If the bi-
naries are not available, the program cannot be reverse engineered by
disassembling. Hence, pirating a well designed web service is impossi-
ble.

Parameters of web service methods are often passed as a set of key-value
pairs encoded in the query part of the URL. The response is often text in
a machine readable format such as XML or JSON. Contracts on the values
of the response and the request are defined by the web service specification.
The contracts can restrict valid input parameters, specify the value of the
response, and – for stateful web services – restrict the order in which various
methods of the same service are to be executed.

Unfortunately, the client of a web service, i.e., a program that sends a
request to a web service, does not statically have the web service specifi-
cation. In a statically typed language such as TouchDevelop the contracts
mostly state that the argument and the return value of of a method that
communicates with a web service are of type string. Additionally, given the
nature of the Internet, every call to a web service must acknowledge the
possibility of a connection failure.

2.6 Bricks

The Bricks analysis is a string analysis based on abstract interpretation de-
veloped by Costatini et al. [10]. We already briefly discussed the Bricks
analysis in Section 5 as it is the main string analysis we base our approach

16 CHAPTER 2. BACKGROUND

on. In this section we will describe the Bricks analysis in more detail. Un-
derstanding the Bricks analysis is important for understanding the details
of our analysis.

The bricks analysis approximates the values a string can take similar to
regular expressions. A hands-on example of the functionality of the Bricks
analysis is given in Figure 2.1.

In the abstract state, the Bricks analysis maintains a Bricks domain L
for each string value. The Bricks domain contains a list of Brick elements
B. Each Brick element is a set of string values and two integer numbers.
The Brick element B [S]m,M represents all concrete strings that can be built
by concatenating between m and M elements from the set of strings S. For
example, the Brick element B [{hoch, haus}]1,2 represents the string values
hoch, haus, hochhaus and haushoch.

The Brick element that represents the set of all possible string values
is denoted b >B. Furthermore, the Brick element representing an invalid
string value, i.e., a value that can never achieved by a program, is denoted
by ⊥B.

Multiple Bricks domains can represent the same set of strings. Costatini
et al. define five normalization rules that map semantically equivalent Bricks
domains to the same Bricks domain. The following equations determine the
normalization rules. U , and V are sets of strings, m, M , a, b, x, and
y are positive integers, and Ux is a set of strings containing the x-fold
concatenation of all strings in U .

L
[
B [∅]0,0 B [∅]0,0

]
7→ L

[
B [∅]0,0

]
(2.1)

L
[
B [U]1,1 B [V]1,1

]
7→ L

[
B [U ∪ V]1,1

]
(2.2)

L
[
B [U]M,M

]
7→ L

[
B
[
UM

]M,M
]

(2.3)

L
[
B [U]x,a B [U]y,b

]
7→ L

[
B [U]x+y,a+b

]
(2.4)

∀m > 1,M > m : L
[
B [U]m,M

]
7→ L

[
B [U]m,m B [U]0,M−m

]
(2.5)

In TouchDevelop and many other object-oriented programming languages
such as Java, a string representation of arbitrary-typed objects is defined.
For example, a program can concatenate a string and a number. A short-
coming of the Bricks analysis is, that it cannot relate substrings created by
non-string objects to an apropriate analysis for their actual type. For exam-
ple, if a program computes the string "value=" + x, where x is not of type
string and the plus operator means string concatenation, the Bricks analysis
loses all information we may have about x. In Section 3.2 we develop an
augmentation to the Bricks analysis to deal with these shortcomings.

2.7. MAYBE CONTAINED CHARACTER ANALYSIS 17

2.7 Maybe Contained Character Analysis

Another string analysis defined in the abstract interpretation framework and
proposed by Costatini et al. [10] is the Maybe Contained Character analysis.
The analysis itself is strictly less expressive than the Bricks analysis, but is
cheaper to compute. The analysis does just that what its name promises: It
represents a string value as a set of characters that may be contained in the
string. To conform the abstract interpretation framework by composing a
complete lattice, the Maybe Contained Characters analysis has a top element
– representing an infinitely large set of characters – and a bottom element.
The least upper bound operator is defined as the union operator on the sets
while the greatest lower bound operator is defined as the intersection of the
sets.

18 CHAPTER 2. BACKGROUND

� u := "hello" c

v := u w := "fish"

v := u + " world" w := "chips"

i<M w := w + " and " + w

i := i + 1

�

M, c 7→input

i 7→ 0

true

false

true

false

(a) Control flow graph representation of a program that performs various
operations on string values. := is the assignment operator, + is the string
concatenation operator. Assignment nodes are marked by boxes while con-
ditional nodes are marked by diamonds. The values for M and c are already
given as input; i is set to zero.

u 7→ L
[
B [{hello}]1,1

]
v 7→ L

[
B [{hello}]1,1 B [{world}]0,1

]
w 7→ L

[
B
[
{fish}

]1,1 B [{ and fish, and chips}
]0,inf]

(b) The values the three string variables can take at the end
of the program, represented as an over approximation using
the Bricks domain.

u 7→ {hello}
v 7→ {hello, hello world}

w 7→ {fish,fish and fish, . . . ,

M times︷ ︸︸ ︷
fish and . . . and fish,

chips, chips and chips, . . . , chips and . . . and chips︸ ︷︷ ︸
M times

}

(c) The actual possible values the three string variables can take at
the end of the program. Each variable will take exactly one value
from the corresponding set of strings.

Figure 2.1: Example program illustrating the functionality of the Bricks
analysis.

Chapter 3

Analysis

In this chapter we are going to develop an analysis for programs that uti-
lize web services. Consider the example given in Figure 1.1. The example
makes a request to the event listings service provided by The New York
Times through their web API. A conservative analysis assumes the possi-
ble inaccessibility of the fields result, and num results of the JSON-object
returned by the web service. The analysis we are going to describe in this
chapter is able to deduce the existence of those fields. However, the exis-
tence of those fields depends on the string that is returned for the HTTP
request sent to the web API. The information on the returned value is de-
scribed in the specification of the web service and may further depend on
the parameters passed through the URL string.

Formally, we have to understand the semantics of web service specifi-
cations in the context of our program. In particular, we have to formalize
the constraints that a web service specification imposes on the URL strings
in the program. To solve this problem, we introduce Split Expressions as
predicates in Section 3.3. The Split Expressions can express web service
specification constraints on string values. Split Expressions can be used
divide a string into its components and express properties not only of the
string but also of the underlying data encoded into the string (e.g. numeric
values). In section Section 3.5, we define a generic web service specification
language similar to WADL and use the previously introduced split expres-
sions to define their semantics.

Since our goal is to check web service specification not against one con-
crete string but all possible strings produced by a program, we have to find
a suitable string abstraction to precisely and efficiently infer and represent
a potentially unbounded number of strings. In particular, we design an
abstract domain that satisfies the following requirements:

� The domain can efficiently and precisely evaluate Split Expressions on
strings.

19

20 CHAPTER 3. ANALYSIS

� The domain is able to represent the semantics of operations that are
typically used to create URL strings, e.g., conditional statements,
string concatenation, substring replacement, URL encoding.

� The domain must be able to extract non-string values encoded in an
URL string.

At the core of our analysis is a domain that represents URL strings.
In Section 3.2, we propose a modification of the Bricks string analysis that
was developed by Constatini et al. [10] to represent the values of the URL
strings. An introduction to the original Bricks string analysis is given in
Section 2.6. The Relational Bricks domain

� stores the string-representation of non-string values as a symbolic
variable. The variable is used to store and access the original, non-
converted value in a specialized domain. For example, the expression
(5 * x)Ýto string stores the value of 5 * x as a symbolic variable.

� provides a split operation that divides a string into two parts at a
given delimiter.

� can provide knowledge about what characters may be contained in a
substring, even if there is no knowledge about the order in which these
characters appear. This is especially useful in combination with URL
encoding: The encoding guarantees that certain reserved characters,
e.g., the ampersand, the question mark, and the equal sign, do not
appear. The absence guarantee of certain characters in a substring
can have a great impact on the precision of the split operation.

Web service specifications not only impose requirements on input strings,
they also provide structural guarantees for the returned strings. Often, web
services provide their response in a hierarchical data format such as JSON
or XML. The format of the response and the fields that can possibly be
accessed can depend on the input parameters. Our analysis must be able to
deduce the structural guarantees of the response to a request.

3.1 Expressions

In this section we are going to introduce some general notation and the
concept of an expression.

Expressions are the elementary building blocks of a program. Let E
denote the set of all expressions. The concept of an expression is refined
by a type system. Each expression has a type that restricts the values the
expression can take at runtime. Let S ⊆ E denote the set of all expressions
that take a string value. For short, we will call this set S the set of all

3.1. EXPRESSIONS 21

string expressions and each element of S will be called a string expression.
Similarly, let B ⊆ E, and N ⊆ E be the sets of all boolean, and numeric
expressions, respectively.

The order in which the concrete expressions are executed is determined
by the program code. Note that in this work we are not concerned with
nondeterminism caused by concurrency.

We further distinguish pure and impure expressions. There are various
definitions of purity in the literature with the most rigorous definition of a
pure expression being an expression that does not alter the program state
in any way and does return a deterministic value. Others have a more
practical view and allow pure methods to alter the state in a very restricted
way to account for caching and lazy evaluation. In this work, we stick to the
rigorous definition which allows us to make a connection to mathematical
functions. Inspired by Darvas and Leino [13], we try to give pure expressions
a mathematical encoding if necessary.

Let us first define the atomic expressions user input and constants. For
simplicity, let a numeric constant be any value in R. There are exactly two
boolean constants: true and false. While TouchDevelop has no special type
for a single character (every single character is a string by itself), we define a
string constant as a sequence of UTF-8 characters. The user input expression
ask string can take any valid string value and the input expression ask

number can take any value in R.

In general, let the n-tuple (c1, c2, . . . , cn) be the mathematical represen-
tation of a concrete string formed by the UTF-8 characters c1, . . . , cn. The
special character ∅ will be used to denote the empty string, which is rep-
resented by the 0-Tuple (). Because the tuple notation can be tedious, we
introduce a notation for string constants: Let

blueberry := (b, l, u, e, b, e, r, r, y) (3.1)

.

The string concatenation expression – denoted by the � operator in
TouchDevelop – is a pure string expression, which can be encoded as the
mathematical function

concat((a0, . . . , an), (b0, . . . , bm)) = (a1, . . . , an, b1, . . . , bm) (3.2)

Further, we encode the pure string expressions count, substring, and indexof

22 CHAPTER 3. ANALYSIS

as mathematical functions:

count((s0, . . . , sn)) = n+ 1 (3.3)

substring((t0, . . . , tn), s, l) =

() if l < 1 ∨ s < 0 ∨ s > n

(ts, . . . , tn) if s+ l ≥ n
(ts, . . . , ts+l−1) otherwise

(3.4)

indexof((t0, . . . , tn), (a0, . . . , am)) = min
i
{−1, argi{(ti, . . . , ti+m) = (a0, . . . , am)}}

(3.5)

The boolean and arithmetic operators are also pure expressions. We will
use the obvious mathematical counterpart for the encoding and denote the
encoding function by a conventional mathematical symbol with an overline.
For example, the expression x + y is encoded as +̄(x, y) = x + y, and the
expression a and b is encoded as ∧̄(a, b) = a∧ b. Comparison operators may
depend on the compared expressions. In case of string expressions, boolean
expressions, and numeric expressions, comparison operators are also pure
expressions and we use the obvious mathematical counterpart for encoding.

Formally, the representation of boolean expressions as a mathematical
function is a predicate.

3.2 Relational Bricks

The Bricks analysis, as mentioned in Section 2.6 and developed by Costa-
tini et al. [10], provides an abstract domain to represent string values. The
domain captures information about strings that is similar to regular expres-
sions. The Relational Bricks analysis is strictly more expressive than the
Bricks analysis. The Relational Bricks analysis is supposed substitute the
Bricks analysis where the additional expressiveness is needed. We are going
to use the same notation as the concepts stay the same.

Figure 3.1 gives high-level view on the Relational Bricks analysis. The
analysis is built hierarchical out of the Bricks domain, the Brick element, and
the Abstract String domain. The Abstract String domain is introduced in
Section 3.2.2. The domain is further refined in Section 3.2.3. The difference
between the original Bricks analysis and the Relational Bricks analysis are
the possible contents of the Brick elements: The original analysis uses string
constants while the augmented Relational Bricks analysis stores a set of
Abstract Strings.

A set of concrete string values is represented by a Relational Bricks
domain L, consisting of a list of Brick elements B [S]m,M . S is a set of
Abstract String domains, which are a also an abstract domain that capture
information about concrete string values. The Abstract String domain is

3.2. RELATIONAL BRICKS 23

Relational Bricks

var1

var2

var3

vari

Dom1

Dom2

Dom3

Domi

Bricks Domain

Brick1, Brick2, ..., Brickk

Brick

str1

strx

min, Max

str2

Abstract String

- c[s]

- o[v]

- T[M]

- concat(s1,s2,...)

- Top

- Bottom

M

Maybe
Contained
Character

Figure 3.1: The big picture of the Relational Bricks analysis.

introduced in Section 3.2.2 and in Section 3.2.3. The Abstract String mainly
provides a vessel for symbolic variables – introduced in Section 3.2.1 – which
make the connection between values of an arbitrary type and their string
representation.

The original Bricks analysis does not allow to build relations to other ab-
stract domains. Suppose a program communicates with a web API that re-
quires a parameter lon which must take a value between −180 and 180. Sup-
pose the corresponding substring of the URL string is built as p:= "lat" �x,
where the numeric variable x fullfills the requirement. The Bricks analysis
could capture this string value of p as

p 7→ L
[
B [{lat=}]1,1 B [{-}]0,1 B [{1}]0,1 B [{0 , . . . 9}]0,1 B [{0 , . . . 9}]1,1

]
However, this representation can only be calculated if the semantics of con-

24 CHAPTER 3. ANALYSIS

1 var x = wall Ý ask number("factorial of?")

2 var base = "http :// api.calculator.com/factorial?"

3 var param = "val=" � x

4 if (x < 0) then

5 x = 0

6 var js = web Ý download json(base � param)

7 if (not js Ý is invalid) then

8 js Ý string("result") Ý post to wall

Figure 3.2: A TouchDevelop script using a fictitious web API at
api.calculator.com that computes the factorial of val. Factorials can only be
computed for positive integers. Negative numbers can potentially be passed
to the web service, albeit the program is filtering negative values of x. There
is a bug in the program: The invalid values of x are filtered after they are
assigned to the substring in line 3. The value of the symbolic variable intro-
duced by our analysis is equal to the value of x at line 3 and not necessarily
equal to the value of x at line 6.

version to a string value are defined accordingly. One cannot define precise
general semantics for conversion to string values of arbitrary-typed values.
Each time a new domain is introduced, those semantics have to be defined
anew. Furthermore, it is not straightforward to relate this string represen-
tation with other values of the original type; the semantics for the reverse
conversion – or parsing of the string – need to be defined. In our example, we
might want to assume that the string representation of x indeed corresponds
to a value that is less than 180.

The relation between the original value and its string representation is
kept in the Abstract String using a symbolic variable identifier. This allows
to store the an abstract value for the string representation without any loss
in precision and without the need to define additional semantics.

3.2.1 Symbolic Variables

For every expression that is transformed by either explicitly or implicitly
calling to string, the analysis keeps the relation between the string value
and the value of the original expression by introducing a symbolic variable.
The purpose of the symbolic variable is to store the current value of the
expression. In general, the value of an expression depends on the state it
is executed in and we must assume that an expression evaluates differently
in a different state. However, a variable that gets only assigned once is
guaranteed to evaluate to the same value independent of other changes to
the state.

Consider the example from Figure 3.2: The value that gets assigned
to variable param is the concatenation of the string constant val= and the

3.2. RELATIONAL BRICKS 25

string representation of x. Hence, the analysis creates a new symbolic vari-
able sv1 when looking at the string concatenation in line 3. The analysis
further assumes equality of sv1 and x. Because of this, the changes to x

in the following if-statement do not affect the value of sv1, meaning the
introduction of a new symbolic variable is necessary for every non-constant
expression. Assuming that the web service does only compute factorials for
positive numbers, the program has a bug, because the value of x is kept
positive only after its original value is used as the val-parameter in the URL
query. Had the programmer put line 3 after the if-statement, the symbolic
variable would have been restricted to a positive number.

3.2.2 Abstract String

The symbolic variables introduced in the previous section do not make a
relational domain by themself. They merely store information about the
value of an expression that gets interpreted as a string value. The Bricks
analysis should be able to somehow keep track about the relation between
substrings and the values of the symbolic variables. Instead of memorizing
a set of string constants in each Brick element, a set of Abstract Strings is
memorized. Abstract Strings are elements of the Abstract String domain
that is defined by the grammar

G = ({S,C,O},ΣT , R, S) (3.6)

with the terminals

ΣT := {
∅SA , the empty string ()

c [x] , representation of string constant x 6= ()

o [sv] symbolic variable sv

>SA every valid string

⊥SA an invalid string }

with the rules

R := {S 7→ ∅SA | C | >SA | ⊥SA
C 7→ c [x] | c [x]O |O
O 7→ o [sv]C | o [sv] }

Hence, the grammar represents all possible sequences of Abstract String con-
stants c [. . .] and other Abstract Strings o [. . .] without multiple consecutive
constants. Giving the sequence of Abstract Strings the meaning of string

26 CHAPTER 3. ANALYSIS

concatenation, we are able to uniquely represent all string values. The value
of the variable url in the example given in Figure 3.2 is uniquely represented
by the Abstract String

c
[
http://api.calculator.com/factorial?val=

]
o [sv1]

where sv1 is assumed to be equal to num and sv2 is assumed to be equal to
den.

The Abstract String domain – denoted SA from now on – forms a com-
plete lattice with >SA being the maximum, ⊥SA being the minimum and
every other element being at the same height. Formally, SA forms the com-
plete lattice 〈SA,≤SA ,⊥SA ,>SA ,tSA ,uSA〉.

x ≤SA y :=

{
true if x = y ∨ x = ⊥SA ∨ y = >SA
false otherwise

(3.7)

x tSA y :=

y if x = ⊥SA ∨ y = >SA ∨ x = y

x if y = ⊥SA ∨ x = >SA
>SA otherwise

(3.8)

x uSA y :=

y if y = ⊥SA ∨ x = >SA ∨ x = y

x if x = ⊥SA ∨ y = >SA
⊥SA otherwise

(3.9)

We need to define the semantics of string concatenation on Abstract
Strings, because the semantics of string concatenation on Brick elements
relies on this definition. Note that a sequence of Abstract Strings repre-
sents string concatenation by definition. However, not every sequence of
Abstract Strings is an Abstract String as of the definition. To concatenate
two Abstract Strings, first join the two Abstract Strings. Then, recreate an
abstract string by applying the following rules:

� The definition prohibits two subsequent Abstract String constants.
Replace all two subsequent Abstract String constants by a single Ab-
stract String constant. The new constant is created by concatenating
the concrete string constants.

� Remove all ∅SA . If two empty strings were concatenated in the first
place, the result is still ∅SA though.

� If the Abstract String contains >SA return >SA .

� If the Abstract String contains ⊥SA return ⊥SA .

3.2. RELATIONAL BRICKS 27

Concatenation of Abstract Strings can formally be defined as follows:
Let a⊕ b denote the concatenation of the two Abstract Strings a and b. For
arbitrary Abstract Strings a1, . . . , an, b1, . . . , bm and string literals u, v, the
following equations hold:

a = a1 . . . anc [u] ∈ SA ∧ b = c [v] b1 . . . bm ∈ SA ⇒
a⊕ b = a1 . . . anc [concat(u, v)] b1 . . . bm

(3.10)

a = a1 . . . an ∈ SA ∧ b = b1 . . . bm ∈ SA ∧ (an 6= c [u] ∨ b1 6= c [v])⇒
a⊕ b = a1 . . . anb1 . . . bm

(3.11)

a1 ⊕∅SA = ∅SA ⊕ a1 = a1 (3.12)

a1 ⊕⊥SA = ⊥SA ⊕ a1 = ⊥SA (3.13)

a1 ⊕>SA = >SA ⊕ a1 = >SA (3.14)

Note that the Brick element containing>SA represents all possible strings.
Hence, B [{>SA , . . .}]

m,M = >B. Consequently, every Brick containing >SA
can be transformed into >B. Analogous, the Brick element containing only
⊥SA is equivalent to ⊥B.

∀m,M ∈ N,∀S ⊆ SA : m < M ∧ >SA ∈ S → B [S]m,M 7→ >B (3.15)

3.2.3 Abstract Strings with Maybe Contained Character Do-
main

The domain that is described in the previous section may not be precise
enough in many cases. The example in Figure 3.3 utilizes URL encoding
on user input. URL encoding replaces reserved characters such as ? and
& by other characters. Similar to SQL injection, a user could otherwise
manipulate the query and retrieve a web resource that was not intended by
the programmer.

1 var base := "http :// transport.opendata.ch/v1/connections?"

2 var f := web Ý url encode(wall Ý ask string("Departure?"))

3 var t := web Ý url encode(wall Ý ask string("Arrival?"))

4 var query := "from=" � f � "&to=" � t

5 var result := web Ý download json(base � query)

Figure 3.3: Example web service request with arbitrary string queries by
the user. URL encoding prohibits injection with malicious user input.

To retain precision when analyzing programs where substring replace-
ment is used, we propose a extension to the Abstract String domain. An-
other domain is added to each Abstract String: The Maybe Contained Char-

28 CHAPTER 3. ANALYSIS

acter domain. The added domain is an augmentation to the domain pro-
posed by [10] as described in Section 2.7. However, the original domain
only stores a set of characters that may be contained, being infeasible for
strings that can possibly contain many characters except a few. The mod-
ified domain stores both, a set domain of maybe contained characters and
an inverse set domain of definitively not contained characters. Naturally, it
is not possible to gain information from a combination of the two subdo-
mains simultaneously, as every character not contained in the set of maybe
contained characters is definitively not in the string, and hence an element
of the inverse set domain. The opposite is likewise true: Each character
that is not contained in the inverse set domain may be contained in the
string and therefore is an element of the set domain. Nevertheless, the aug-
mented Maybe Contained Character domain adds more expressiveness and
flexibility. In some cases, the set of possibly contained characters is much
smaller than the set of definitively not contained characters; sometimes it is
the other way around. The string representation of a numeric value can for
example only contain digits, a decimal point and a minus sign. On the other
hand, the value of variable f in the example in Figure 3.3 can potentially
contain every character except for the reserved characters.

From now on, let M [{a1, . . . , an}] denote the Maybe Contained Char-
acter domain that may but need not contain the characters a1 to an but

no other characters, and letM
[
{b1, . . . , bm}

]
denote the Maybe Contained

Character domain that may contain every character except b1 to bm. M [S],
where S is an Abstract String, denotes the Maybe Contained Character do-
main of S, and hence represents all characters that may be contained in S.
The Maybe Contained Characters domain forms a complete lattice with the
top element >M and the bottom element ⊥M.

Let us describe in more detail how the Maybe Contained Character do-
main is used in combination with the Abstract String and what implication
this combination has. The elementary building blocks still exist: Constants
c [x], other strings o [sv] and the top and bottom element >SA and ⊥SA
are combined to represent a set of possible string values. However, each
of these elementary building blocks receives a Maybe Contained Character
domain. For ⊥SA , this domain is always bottom, and the string constant
c [(x1, x2, . . . , xn)] may contain exactly the characters x1 to xn. The Maybe
Contained Character domain of o [sv] contains exactly the characters that
the string representation of sv can contain; for numeric values this is for
example the set of all digits, the decimal point and the minus sign. Posi-
tive numbers cannot contain the minus sign and integers cannot contain the
decimal point.

The changes are more severe for the top element >SA . Let [>SA [M]],
with the Maybe Contained Characters domain M , represent all strings that
do only contain any of the characters contained in M . Assuming that C is

3.3. SPLIT EXPRESSIONS 29

the set of all URL reserved characters, the Abstract String that represents
f in the example in Figure 3.3 is

[
>SA [M

[
C
]
]
]
. To cope with the increased

expressiveness, we modify the grammar that defines the Abstract String
domain in Equation 3.6.

G = ({S,C,O},ΣT , R, S) (3.16)

ΣT := {∅SA , c [x] , o [sv]

[>SA [M]] ,>SA ,⊥SA}

R := {S 7→ ∅SA | C | >SA | ⊥SA
C 7→ c [x] | c [x]O |O
O 7→ o [sv]C | o [sv] | [>SA [M]]C | [>SA [M]] }

The definition of concatenation of Abstract Strings must be updated
accordingly. The new elementary building block [>SA [C]] can be part of
a sequence of building blocks. However, the sequence [>SA [C1]][>SA [C2]]
represents the same set of strings that [>SA [(C1 t C2)]] does. The following
equation is added to the definition of the string concatenation:

a = a1 . . . an [>SA [U]] ∈ SA ∧ b = [>SA [V]] b1 . . . bm ∈ SA ⇒
a⊕ b = a1 . . . an [>SA [(U t V)]] b1 . . . bm

(3.17)

Accordingly, the condition on Equation 3.11 must be updated and the
equation is replaced by the following equation:

a = a1 . . . an ∈ SA ∧ b = b1 . . . bm ∈ SA ∧ (an 6= c [u] ∨ b1 6= c [v])

∧ (an 6= [>SA [U]] ∨ b1 6= [>SA [V]])⇒
a⊕ b = a1 . . . anb1 . . . bm

(3.18)

3.3 Split Expressions

In this section we define a new expression which we call Split Expression.
The Split Expression shall provide a predicate on substrings. Consider the
example string length=14 . Suppose this string is substring to a URL query
and the corresponding specifications state that the value of length must be
positive. These constraints are represented by the informal predicate: “If
left of the equal sign is the value length, then the value right of the equal
sign must be positive.”

30 CHAPTER 3. ANALYSIS

1 action split(t: String , s: String , f: Comparison of Strings)

2 returns(p: Boolean)

3 var idx := t Ý index of(s)

4 if(idx >0) then

5 var l := t Ý substring(0,idx)

6 var idx2 := idx + s Ý count

7 var r := t Ý substring(idx2 ,t Ý count - idx2)

8 p := f Ý run(l, r) > 0

9 else

10 p := f Ý run(t, "") > 0

11 end

Figure 3.4: A concrete implementation of the Split expression as an action in
TouchDevelop. The input parameter f is typed as a comparison of strings,
which is an action taking two string arguments and returning one numeric
argument.

First, we are going to define the Split expression for concrete string
values. Figure 3.4 shows a possible implementation of Split expressions for
TouchDevelop. Later, in Section 3.3.1, we will define the Split expression as
a mathematical predicate on abstract string values.

The semantics of the Split expression are the following: Given an input
string t, a separation string s, and a predicate f, find the first occurrence
of s in t and apply f to the substring left and right of this occurrence.
For example, the Split expression applied to the input string "hello", the
separation string "l" and the predicatef returns f("he", "lo"). If the sep-
aration string s does not occur in t, the whole string t is considered to be
the left hand side while the right hand side is considered to be the empty
string.

Figure 3.4 shows a working implementation of the Split expression in
TouchDevelop to illustrate the semantics on a concrete string. However,
the analyzed programs do not need to call this Split expression for our
analysis to be able to work. The analysis does insert the Split expression
itself. Note that the analysis is only allowed to modify the original program
if the behavior of the program is not changed at all. In other words, all
changes done by the analysis must preserve the state at any point in the
program except for variables introduced by the analysis. Pure functions, as
mentioned in Section 3.1, do not change the state. Fortunately, if we impose
a purity restriction on f, we can show that the Split expression itself is in
fact pure:

� The statements in line 3,5,6, and 7 in Figure 3.4 are pure, because
substring, count, and index of are pure as defined in Section 3.1.
The state is only changed by adding new temporary variables.

� Since we restrict f to be pure, only pure methods are executed in the

3.3. SPLIT EXPRESSIONS 31

statements in line 8 and 10. p that gets assigned is a freshly created
variable that gets returned.

� As each individual statement of the Split expression is pure, we can
conclude that the Split expression itself is pure. As such, we can define
a mathematical function with equivalent semantics, i.e., a predicate.

3.3.1 Split Expression as a Predicate

The purity property of the Split expression allows us to define a mathemat-
ical predicate with equivalent semantics. Equation 3.19 defines the Split
expression as mathematical function with a boolean value domain. We will
be referring to this mathematical function as Split expression.

t: S× S× (S× S→ B)→ B
t (t, σ, f) = f(l, r) , where

l =

{
substring(t, 0, indexof(t, σ)) if indexof(t, σ) ≥ 0

t otherwise

r =

{
substring(t, indexof(t, σ) + count(σ), count(t)) if indexof(t, σ) ≥ 0

∅ otherwise

(3.19)

The Split expression is a predicate in higher-order logic. The argument
f of t is a predicate itself.

Let us give a more practical example to show the usefulness of the Split
expression. Often, a parameter to a web service is passed as a key-value pair.
In the example given in Figure 3.2, the variable param takes a value from the
abstract string representation c [val=]o [sv], given the assumed equality of
sv and x. The Split expression t (param,=, (l, r)→ l = val ∧ r ≥ 0) allows
us to state that we assume param to be a key-value pair where the key is
equal to val and the value is a positive number.

3.3.2 Forall-Splits Quantifier

Using the fact that the Split expression itself is a predicate, we define a
forall-splits quantifier A

A : S× (S 7→ B)× S× S 7→ B
A(σ, f, e1,∅) := f(e1)

A(σ, f, e1, e2) := ∧̄ (f(e1),t (tostring(e2), σ,A(σ, f)))

(3.20)

32 CHAPTER 3. ANALYSIS

By definition, A can be used as predicate function for a Split expression
where it will recursively introduce a Split expression for the right split until
the separation character σ does no longer exist.

With the forall-splits quantifier on splits we can create powerful boolean
expressions on URL strings. Usually, parameters to web services are passed
as a set of key value pairs. The parameter list is separated from the base
URL by a question mark, and the individual parameters are separated by
an ampersand. The key and the value of each parameter are then separated
by an equal sign. Assume that an example program requests an answer
from a web service that requires two input parameters with the key lat and
long that take a valid latitude and longitude value. The order in which
the parameters are passed is not important. Suppose the URL is stored
in the variable url. A combination of Split expressions creates a boolean
expression that states which values for this URL are valid:

t
(
url, ? , (b, P)→
t
(
P,& ,A(& , p→
t
(
p,=, (k, v)→

(k 6= lat ∨ (v ≤ 90 ∧ v ≥ −90)) ∧
(k 6= long ∨ (v ≤ 180 ∧ v ≥ −180)))

)))
(3.21)

The Split expression from Equation 3.21 states that on the right side of
the first occurrence of ? , each split separated by & , when split at = complies
with the restriction that either the left side of the split is not equal to the
key (lat, or long respectively), or the right side of the split is within the
respective bounds. In short, the above Split expression simply states that
for each parameter, if the key is lat, then the value must be within [−90, 90]
and if the key is long, then the value must be within [−180, 180].

Each concrete string value is finite. Hence, each string can only be split
finitely many times and the execution of a Split expression on a concrete
string is guaranteed to terminate even if a forall-splits quantifier is applied.
However, the analysis is performing the Split expressions on an abstract rep-
resentation of string values which can represent potentially infinitely many
concrete string values. Termination of the evaluation of a Split expres-
sion depends on the abstract implementation in the corresponding string
domains.

3.4 Split Expression in the Abstract Domain

This section describes how the Split expressions defined in Section 3.3 are
used in the abstract interpretation framework. Notably, this section gives a
formal definition of the execution of Split expressions in the relational Bricks
analysis, accompanied by realistic examples.

3.4. SPLIT EXPRESSION IN THE ABSTRACT DOMAIN 33

A Split expression by itself, being a predicate and hence a pure expres-
sion, does not alter the state. As such they can however be assumed as
program specification. An assumption reduces the over approximation of
the real state, leading to a more precise analysis.

Split expressions that divide a string value at a delimiter of arbitrary
length are difficult to formalize on the Bricks domain, because they require
the observation of the Bricks domain as a whole. Dividing a Bricks domain
at a delimiter string of size 1 greatly reduces the complexity. Fortunately,
having the semantics of URL strings in mind we do not restrict ourself
when reducing the expressiveness of the Split expressions by constraining
the split delimiter to a single character. A more elaborate argument on
why a formalization on the Bricks domain is much harder for delimiters of
arbitrary length is given in Section 3.4.2, but from now on, just assume that
the delimiter is a single character.

3.4.1 Introducing the Abstract Evaluation of Split Expres-
sions

We need to define the semantics of the Split expression predicate on the
Relational Bricks domain. The semantics should be sound and keep a rea-
sonable degree of precision. Furthermore, computing the Split expression on
the Relational Bricks domain shall terminate. Because a Bricks domain can
represent infinitely many strings of arbitrary length, and because the forall-
splits quantifier introduces predicates recursively, termination is no simply
guaranteed. Nevertheless, we can design the semantics without having to
sacrifice precision.

We make the following two observations about the Split expression t
(t, σ, f):

1. f is a predicate function. Hence, the evaluation of f is deterministic.

2. If a Split expression is assumed on the string expression t, it must hold
for every possible value of t.

The first observation is used when dealing with large or infinite sets of
strings in combination with the forall-splits quantifier A defined in Section
3.3.2 or similar recursive calls to the Split expression. Because of the deter-
ministic evaluation, the domain does not need to evaluate Split expressions
on the same strings and predicate function f multiple times. For example,

t (5&5&5&5 ,& ,A(& , x→ x = 5)) =

t (5&5 ,&, (l, r)→ l = 5 ∧ r = 5)

This property can be extended to Bricks domains that represent an infi-
nite set of concrete strings. While a Bricks domain can represent infinitely
many strings, the Bricks domain itself is finite as it can only contain finitely

34 CHAPTER 3. ANALYSIS

many Brick elements, which themself only contain a finite set of Abstract
Strings. In Section 3.4.3, after completely introducing the semantics of the
Split expression in the Relational Bricks domain, we give an informal rea-
soning on why applying the Split expressions on the domain is bound to
terminate without sacrificing precision.

The second observation implies that we can divide the set of possible
string values that t can take into multiple sets and look at them individually.
For example, if a Split expression must hold for B [x]0,2, it must hold for
both, B [x]0,1 and B [x]2,2, which both represent a subset of strings that are
represented by the original Brick element.

Consider the example given in Figure 3.5. Suppose the specification of
the web service require v to be a list of comma-separated positive numbers.
The Split expression making this statement would be t (v, ,,A(,, p→ p ≥ 0)).
While v can take infinitely many different string values, the representation
in the Bricks domain remains finite.

1 var n := wall Ý ask number("positive number")

2 var v := "0"

3 while n > 0 do

4 v := v � "," � n

5 n := wall Ý ask number("positive number")

6 val base := "http :// api.calculator.com/factorial?vector="

7 web Ý download(base � v)

Figure 3.5: Call to a fictitious web service located at api.calculator.com.
The web service is supposed to compute the factorial for each element of
a vector. The vector is supposed to be a comma-separated list of positive
numbers. In the last line, the representation of v in the Bricks domain

is L
[
B [c [0]]1,1 B [c [,] o [sv1]]

0,1 B [c [,] o [sv2]]
0,inf

]
, where sv1 is the symbolic

variable created for the first assignment to n and sv2 is the symbolic variable
created for all assignments to n inside the loop.

According to the second observation, we can evaluate the domains

L
[
B [{c [0]}]1,1 B [{c [,] o [sv1]}]1,1 B [{c [,] o [sv2]}]0,inf

]
L
[
B [{c [0]}]1,1 B [{c [,] o [sv2]}]0,inf

]
separately. Evaluation of the second domain can again be separated as

L
[
B [{c [0]}]1,1

]
L
[
B [{c [0]}]1,1 B [{c [,] o [sv2]}]1,inf

]
Let us look at the last part of the separation to visualize the impact of
the first observation. The comma is the first character in the second Brick

3.4. SPLIT EXPRESSION IN THE ABSTRACT DOMAIN 35

element. Hence, the left hand side of the first split is the concrete string 0
while the right hand side is again a set of infinitely many strings, represented
by the Brick domain

L
[
B [{o [sv2]}]1,1 B [{c [,] o [sv2]}]0,inf

]
The second observation can be applied. Strings represented by this Bricks
domain only contain a comma, if the second Brick element appears at least
once. Those splits reduce to the left hand side

B [{o [sv2]}]1,1

and the right hand side

L
[
{B [o [sv2]}]1,1 B [{c [,] o [sv2]}]0,inf

]
The analysis reached a repeating point; the last Bricks domain has already
been evaluated and the first domain does not contain a comma. Because
Split expressions evaluate deterministically, the Bricks domain can stop
splitting once a repeating point is reached.

3.4.2 Split Operation on Relational Bricks

We define a Split Helper function Φ : D×c ⊂ S→ 2D×D that takes an string
domain, and a character and returns a set of tuples of string domains. The
set c is defined as

c := {s|s ∈ S ∧ count(s) = 1} (3.22)

While defining the concrete Split expressions for split symbols of arbi-
trary length does not pose a problem, working with non-character symbols
in the Bricks domain adds some difficulties. Detecting substrings of arbi-
trary length is much harder than detecting single characters. For example,
the Bricks domain

L
[
B
[
{apple}

]1,1 B [{pie}
]0,1]

contains the string ep. A different example where detecting strings of arbi-
trary length is harder would be the Bricks element

B [{mad , ogre}]0,2

which can be split at the substring dog even though no individual element
of the set of strings in the Brick element contains the substring. If we would
allow delimiters of arbitrary length, we would always need to look at the
Bricks domain as a whole. Imposing the restriction that the delimiter must
have length 1, we can employ a divide and conquer approach and define

36 CHAPTER 3. ANALYSIS

As already mentioned in the beginning of this section, let σ ∈ c. Note
that this does not pose a great restriction regarding the analysis of URL
strings as the important URL delimiters are single characters.

The helper function is defined for the Abstract String domain, the Brick
elements and the Bricks domain but can be extended to other string do-
mains. Restricting the length of σ to be 1, we can define Φ in a divide and
conquer manner for each domain separately.

Abstract Strings

The helper function Φ is defined for Abstract Strings in the following way:

Φ (>SA , σ) := {(
[
>SA [M

[
{σ}

]
]
]
,>SA), (

[
>SA [M

[
{σ}

]
]
]
,⊥SA)} (3.23)

Φ (⊥SA , σ) := {(⊥SA ,⊥SA)} (3.24)

∀σ∀M : Φ ([>SA [M]] , σ) :={([>SA [M]] ,⊥SA)} if M
[
{σ}

]
uM = M

{(
[
>SA [M uM

[
{σ}

]
]
]
,>SA), (

[
>SA [M uM

[
{σ}

]
]
]
,⊥SA)} otherwise

(3.25)

∀σ∀p = (p0, . . . , pk, σ, pk+2, . . . , pm), indexof(p, σ) = k :

Φ (c [p] , σ) := {(c [(p0, . . . , pk)] , c [(pk+2, . . . , pm])}
(3.26)

∀σ∀p, indexof(p, σ) < 0 : Φ (c [p] , σ) := {(c [p] ,⊥SA)} (3.27)

Φ (o [v] , σ) :={
{(o [v] ,⊥SA) , (

[
>SA [M

[
{σ}

]
]
]
, [>SA [M [o [v]]]])} if σ may be contained in o [v]

{(o [v] ,⊥SA)} otherwise

(3.28)

∀σ∀a = a1a2 . . . an ∈ SA : Φ (a, σ) :=

{(a1 . . . ak−1 ⊕ x1, x2 ⊕ ak+1 . . . an)|∀i ∈ [1, k)∀x ∈ SA :

{(x,⊥SA)} 6= Φ (ai, σ) ∧ (x1, x2) ∈ Φ (ak, σ)}
(3.29)

The first two equations define the Split operation on the top and the
bottom element of the Abstract String lattice. The Maybe Contained Char-
acter domain can be employed to capture the information that the left side
of the split does not contain the split delimiter. Equation 3.25 also uses
the Maybe Contained Character domain to give a more precise split: If the
delimiter is guaranteed not to be contained in the string value then the right
hand side of the split is the bottom element. Otherwise, the Split operation
works similar to the Split operation on >SA with a more restricted Maybe
Contained Character subdomain.

3.4. SPLIT EXPRESSION IN THE ABSTRACT DOMAIN 37

Equation 3.26 and Equation 3.27 define the splitting of Abstract String
constants. The definition is straightforward: If the split delimiter is con-
tained the constant is split at the first occurrence into two constants, if it is
not contained the constant is not split and the right hand side is ⊥SA .

Equation 3.28 defines the Split expression on the last elementary Ab-
stract String. As described in Section 3.2.3, other abstract strings carry
information about maybe contained characters. This information is stored
when the value of the symbolic variable is set. Consider an example pro-
gram that creates a positive integer variable and wants to split the string
representation of this variable at the decimal point. Since it is an integer
variable, the string representation may not contain a decimal point and the
Split operation returns a set containing only the tuple (o [x] ,⊥SA). In a
different example, the string representation of an arbitrary numeric value
is split at the decimal delimiter; the analysis does not know whether the
decimal point is contained or not, hence it returns the set

{(o [x] ,⊥SA), ([>SA [M [{0 , . . . , 9 , -}]]] , [>SA [M [{0 , . . . , 9 , -, ,}]]])}

Brick Elements

Φ (>B, σ) := {(>L,⊥L), (>L,>L)} (3.30)

Φ (⊥B, σ) := {(⊥L,⊥L)} (3.31)

Φ
(
B [S]1,1 , σ

)
:={(

L
[
B [{x1}]1,1

]
,L
[
B [{x2}]1,1

])∣∣∣(x1, x2) ∈ Φ (s, σ) , s ∈ S
} (3.32)

Φ
(
B [S]0,1 , σ

)
:={(

L
[
B [{∅}]1,1

]
,⊥L

)}
∪
{(
L
[
B [{x1}]1,1

]
,L
[
B [{x2}]1,1

])∣∣∣(x1, x2) ∈ Φ (s, σ) , s ∈ S
}

(3.33)

∀M > 1∀S ⊆ SA∀x : (x,⊥SA) /∈ Φ (s, σ) ∧ Φ
(
B [S]0,M , σ

)
:={(

L
[
B [{∅}]1,1

]
,⊥L

)}
∪{(

L
[
B [{x1}]1,1

]
,L
[
B [{x2}]1,1 B [S]0,M−1

])∣∣∣(x1, x2) ∈ Φ (s, σ) , s ∈ S
}

(3.34)

Bricks that are not covered by the above definition can conservatively
be split the same way the top element is split. Note that normalization of
the Bricks domain containing the Brick element in question will remove any
B [S]m,M wherem ≥ 1, and replace it with the sequence B [S]m,m B [S]0,M−m.

The first two equations depict the splitting of the top and the bottom
Bricks element. The definition is fairly natural: The bottom element will

38 CHAPTER 3. ANALYSIS

never contain the character c while the top element may or may not contain
c.

Equation 3.32 covers all Brick elements that represent strings containing
exactly one string element from the set. This kind of Brick element is fairly
common and conveys very precise information. The actual definition of
the splitting operation for Brick elements depends on the definition of the
operation for the Abstract String domain. Nonetheless, the next equation
gives a concrete example on how to split such a Brick element. Because
the sets inside the Brick elements are finite and usually small, the Split
operation should not explode in most real cases.

Φ
(
B
[
{ruby , topaz ,malachite}

]1,1
, a
)

={(
L
[
B
[
{ruby}

]1,1]
,⊥L

)
,(

L
[
B
[
{top}

]1,1]
,L
[
B [{z}]1,1

])
,(

L
[
B [{m}]1,1

]
,L
[
B [{lachite}]1,1

])}
(3.35)

Equation 3.33 is just an application of the second observation described
in Section 3.4.1. The Brick element is simply split into the two Brick ele-
ments which together cover the whole set of strings that the original element
covers.

The last equation describes how Brick elements for concrete string values
of arbitrary length that must contain the delimiter character are to be split.
The following equation gives a concrete example.

Φ
(
B
[
{departure=zurich, arrival=bern}

]0,5
,=
)

={(
L
[
B [{∅}]1,1

]
,⊥L

)
(
L
[
B
[
{departure}

]1,1]
,L
[
B [{zurich}]1,1 B [1, 1]0,4

])
,(

L
[
B [{arrival}]1,1

]
,L
[
B [{bern}]1,1 B [1, 1]0,4

])}
(3.36)

The analysis is always allowed to combine multiple tuples in the set using
the least upper bound operator. For example, the analysis can represent the
splits in the last equation as

Φ
(
B
[
{departure=zurich, arrival=bern}

]0,5
,=
)

={(
L
[
B [{∅}]1,1

]
,⊥L

)
(
L
[
B
[
{departure, arrival}

]1,1]
,L
[
B [{zurich, bern}]1,1 B [1, 1]0,4

])}
(3.37)

3.4. SPLIT EXPRESSION IN THE ABSTRACT DOMAIN 39

1 var d := wall Ý ask string("Departure?")

2 var a := wall Ý ask string("Arrival?")

3 var base := "http :// transport.opendata.ch/v1/connections?"

4 var query := "to=" � a � "&from=" � d

5 web Ý download json(base � query)

(a) Sample code that requests public transport connections between two in-
put cities. The value of query is over approximated by the Bricks domain

L
[
B [{c [to=]}]1,1>BB

[
{c
[
&from=

]
}
]1,1>B

]
1 var d := wall Ý ask string("Departure?")

2 var a := wall Ý ask string("Arrival?")

3 var base := "http :// transport.opendata.ch/v1/connections?"

4 var query := "to=" � web Ý url encode(a)

5 query := query � "&from=" � web Ý url encode(d)

6 for 0 ≤ i < 5 do

7 var v := wall Ý ask string("via")

8 if not v Ý is empty then

9 query := query � "&via[]=" � web Ý url encode(v)

10 web Ý download json(base � query)

(b) Sample code that requests public transport connections be-
tween two input cities. The program allows up to five stopovers.
Each input string is URL encoded before use. The value of
query in the last line is over approximated by the Bricks domain

L
[
B
[
{c [to=] [>SA [W]] c

[
&from=

]
[>SA [W]]}

]1,1 B [{c [&via[]=
]

[>SA [W]]}
]0,5]

where W =M
[
{? ,& ,=, . . .}

]
Figure 3.6

The loss in precision due to the least upper bound operator materializes in
the 1,1-Brick elements. After this reduction, the analysis is no longer able
to match departure and zurich, and arrival and bern together.

Brick Domains

Finally, we define the helper function for Bricks domains. A Bricks
domain consisting of a single Brick element represents the same strings the
Bricks element represents. Let b1, . . . , bn ∈ L:

40 CHAPTER 3. ANALYSIS

Φ (>L, σ) := Φ (>B, σ) (3.38)

Φ (⊥L, σ) := Φ (⊥B, σ) (3.39)

Φ
(
L
[
B [S]m,M

]
, σ
)

:= Φ
(
B [S]m,M , σ

)
(3.40)

Φ (L [b1 . . . bn] , σ) :=⋃
i∈[1,n]

{(
L [b1 . . . bi−1]⊕ x, y ⊕ L [bi+1 . . . bn]

)∣∣∣
∀j ∈ [1, i]∀z ∈ L : (z,⊥L) ∈ Φ (bj , σ) ∧ (x, y) ∈ Φ (bi, σ)

} (3.41)

To get a better understanding of the Split operation we are going to apply
the Split operation at the examples given in Figure 3.6. Let us evaluate
Φ (query,&).

In the example given in Figure 3.6a, the input strings are not URL
encoded. Hence, the string may or may not contain the delimiter & . The
Split operator evaluates to

Φ (query,&) ={(
L
[
B
[
{c [to=]

[
>SA [M

[
&
]
]
]
}
]1,1]

,L
[
>BB

[
{c
[
&from=

]
o [sv2]}

]1,1])
,(

L
[
B
[
{c [to=]

[
>SA [M

[
&
]
]
]
}
]1,1]

,L
[
B
[
{c
[
from=

]
}
]1,1>B])}

(3.42)

The example again emphasizes the importance of the Maybe Contained
Character domain for the precision of the analysis. The second example,
given in Figure 3.6b can be split much more precisely. The Split operator

for this example, given W =M
[
{& , ? , . . .}

]
evaluates to

Φ (query,&) ={(
L
[
B [{c [to=] [>SA [W]]}]1,1

]
,

L
[
B
[
{c
[
from=

]
[>SA [W]]}

]1,1 B [{c [&via[]= [>SA [W]]
]
}
]0,5])}

(3.43)

Let us continue the last example. An important part of analyzing URL
strings is splitting the query at each occurrence of an ampersand. At some
point the analysis would need to apply the Split operation to the right hand

3.4. SPLIT EXPRESSION IN THE ABSTRACT DOMAIN 41

side of the first split.

Φ

(
L
[
B
[
{c
[
from=

]
[>SA [W]]}

]1,1 B [{c [via[]= [>SA [W]]
]
}
]0,5]

,&

)
={(

L
[
B
[
{c
[
from=

]
[>SA [W]]}

]1,1]
,⊥L

)
(
L
[
B
[
{c
[
from=

]
[>SA [W]]}

]1,1]
,L
[
B
[
{c
[
via[]= [>SA [W]]

]
}
]1,1
B
[
{c
[
&via[]= [>SA [W]]

]
}
]0,4])}

(3.44)

A repeating point is reached with the next split of the right hand side.

Φ

(
L
[
B
[
{c
[
via[]= [>SA [W]]

]
}
]1,1
B
[
{c
[
&via[]= [>SA [W]]

]
}
]0,4]

,&

)
={(

L
[
B
[
{c
[
via[]= [>SA [W]]

]
}
]1,1]

,

L
[
B
[
{c
[
via[]= [>SA [W]]

]
}
]1,1
B
[
{c
[
&via[]= [>SA [W]]

]
}
]0,3])}

(3.45)

3.4.3 Termination of Split Expressions

Let us provide an informal reasoning about why a Split expression needs only
be evaluated finitely many times on an arbitrary Bricks domain. Since the
Bricks domain consists of a sequence of Bricks elements, the claim can only
hold, if it holds for any single Brick element. The statement holds trivially
for ⊥B, because the delimiter cannot be contained in an invalid string. The
statement also holds for >B, because when dividing an unknown string, the
remainder is again unknown and we reached a repeating point as the same
predicate gets applied. Because of normalization of Bricks domains, we only
need to cover Brick elements in the form of B [{s1, . . . , sn}]1,1 and in the form
of B [{s1, . . . , sn}]0,m. For the first Brick element, the statement holds if any
contained Abstract String respects the statement. However, the statement
is also trivially true for both kinds of Brick elements, if the delimiter is not
contained. Hence, for the sake of the argument, assume the Brick element
can contain the delimiter. The second Brick element can be reduced to the
set

B [{s1, . . . , sn}]0,m = {L
[
B [{s1, . . . , sn}]1,1 B [{s1, . . . , sn}]0,m−1

]
,B [∅]0,0}

(3.46)
For a finite m, the statement holds inductively. However, a repeating point
is reached after the second iteration. Hence, the statement also holds for
infinite m.

Now we need to show that the statement also holds for every Abstract
String. Trivially, it holds for ⊥SA . Furthermore, it holds for >SA for the

42 CHAPTER 3. ANALYSIS

same reasons it holds for >B. The statement also trivially holds for any
Abstract String constant, because they are just a wrapper for concrete string
constants. The right hand side of the division of [>SA [M]] is either [>SA [M]],
if the delimiter may be contained in M , or ⊥SA otherwise. In the first case,
a repeating point is reached, in the second case, the argument is trivially
true. When dividing o [x], the right hand side is either [>SA [M [o [x]]]] or
⊥SA and the statement holds. Because the length of a sequence of Abstract
Strings is finite (otherwise it would need an infinite amount of memory),
since every Abstract String that is contained in the sequence guarantees
termination, termination is guaranteed for all Abstract Strings.

We reasoned that the Split expression is bound to terminate on Abstract
Strings. We further statet, that the Split expression is bound to terminate
on B [{s1, . . . , sn}]1,1, if it terminates on all Abstract Strings. Hence, it must
terminate on all Brick elements and the necessary termination condition on
Bricks domains is fullfilled. Since we restrict the delimiter to strings of
length 1, each Brick element in a Bricks domain can be observed separately.
Hence, the statement is also implied on the Bricks domain given it holds on
each individual Brick.

3.5 Web Service Specification

An URL string by itself is just a regular string. The semantics of a reqest
to a web service given an URL string only become appearent when looking
at the web service specification. The specification imposes constraints on
the value of the URL string and on the value of the response string. This
section defines a language for an intermediate representation of web service
specification, and describes the semantics that are induced by the web service
specification.

In general, the specification of a method tells about the semantics of
the method without revealing the internal implementation. This fact makes
modular programming possible; the implementation of a method can be
modified without affecting the semantics of a caller who must satisfy the
contracts of the specification. Without specification, there are no guaran-
tees about the behavior of a method call and the caller does not know how
to call the method. Hence, every web service has to provide some form of
specification. There is no unified standard of how to write web service spec-
ification. In this section we are going to introduce a representation of web
service specification which is used by the analysis. The intermediate repre-
sentation of the web service specification is inspired by the web application
description language [19]. The two main additions are

1. The possibility to restrict the values of parameters beyond the type.

2. A more detailed description of the returned value.

3.5. WEB SERVICE SPECIFICATION 43

Let us make a connection between calls to a web service and regular
method calls. In object oriented programming, a regular method call con-
sists of an identifier, a receiver and a list of parameters. Furthermore, the
method call may return one or more (depending on the programming lan-
guage) values. For simplicity we can treat the receiver the same as any
other input parameter. The web services we are going to look at show simi-
lar features: They have an identifier, can take input parameters and return
values. The identifier can be viewed as the host-part of the URL while we
consider the input parameters to be given as a list of key-value pairs in the
query-part of the URL. For example, the call of the web service at the URL
http://transport.opendata.ch/v1/connections?from=Lausanne&to=Bern iden-
tifies the method connections with the two input parameters from and to
taking the values Lausanne and Bern.

The specification of a method call can give restrictions on any value in
the state before the method call that is visible to the method (Precondition).
Furthermore, the specification can give a guarantee on any value in the state
after the method call that is visible to the method (Postcondition). Since
a web service is running in its own process, the web service does not know
anything about the state of the caller. If the web service is stateless, no
knowledge about the state of the caller implies that the postconditions may
only give guarantees about the return values while the preconditions can
only restrict the value of the input parameters. In the following we will
restrict ourself to stateless web services. A stateless architecture style for
web services called Representational State Transfer – REST for short – was
introduced by Fielding [15]. The REST architectural style has since gained
ground in the industry. Nonetheless, stateful web services still exist and
their analysis might be interesting in future projects.

3.5.1 Intermediate Representation of Web Service Specifica-
tion

An intermediate representation of web service specification must be able to
express the following:

� The location of the web service,
e.g., http://api.nytimes.com/svc/events/v2/listings.json.

� A list of required and optional parameters with their key, i.e., identifier.

� Restrictions on the type and the value of the parameters.

� Conditional guarantees on the value of the returned string. We are in-
terested about structural guarantees provided as annotations to strings
(see Section 3.6). The guarantees can be conditioned on the value of
the actual input parameters, e.g., if there is a parameter with key

44 CHAPTER 3. ANALYSIS

format and value json, the response is guaranteed to return the string
representation of a JSON object.

The language defined in this section is inspired by WADL [19], a standard
for web service specification in the machine processable XML-format. While
WADL itself is extensible through XML schemas, there are some differences
and some similarities between the original WADL and our defined language.

� Both, WADL and our language represent the location of the web ser-
vice.

� WADL allows parameters to be specified anywhere in the URL string
by introducing template. For simplicity, we want parameters to only
appear in the query part of the URL, i.e., after the question mark.

� Both, WADL and our languge allow specifying type restrictions on
parameters, and restriction of the value to a set of concrete inputs.

� Our language is more expressive in specifying restrictions on the values
of parameters than WADL. Our language can restrict values to a range
of values, which is particularly useful for numeric parameters. Our
language can also restrict the values to being a list of values, or a
tuple of values that is separated by a specified delimiter. For example,
the language can the value of a parameter to be a comma separated
tuple of numeric values with their individual restrictions. Lastly, the
language can also declare that no guarantees can be made about the
validity of an actual parameter. This unknown constraint is useful in
case we must assume a request to fail for any input value, e.g., when
the input parameter is an API key for which we cannot statically know
the validity.

� WADL can specify the type of the response and condition it on a sin-
gle parameter. Our language further provides structural annotations
for the response and can condition the response on multiple input
parameters.

Let us define the language for the intermediate representation of the web
service specification.

G := (ΣN ,ΣT , R, S) (3.47)

ΣN := {S,H, P,Q, P2, R,Rv, RT , RL, O,C,X}

3.5. WEB SERVICE SPECIFICATION 45

ΣT := {ident, typ, q, n+, n,
withParameters, returns, required, optional, parameter, st, value,

element, each, rd, is, unrestricted, isTupleSeparatedBy, when,

isListSeparatedBy, default, success, fail, or, ::, (,), ; }

R := {
S 7→H withParameters P returns Q

H 7→ident
P 7→ required P2 | optional P2 | P ;P

P2 7→parameter ident :: typ st Rv

Rv 7→ value R

RT 7→n+ rd element R | n+ rd element :: typ R |RT , RT

RL 7→each element R | each element :: typR

R 7→in (n;n) | in (O) | is unrestricted | is unknown | isTupleSeparatedBy ident st RT |
isListSeparatedBy ident st RL

O 7→O;O | ident
Q 7→ when CX | default X | when C or default X

C 7→C or C | parameter ident R

X 7→ success q fail q }

The grammar in Equation 3.47 defines a language to represent web service
specification. The first six terminal symbols in ΣT are placeholders for
a much larger set of possible values. The placeholder ident refers to all
possible identifiers, i.e., various string values. The placeholder typ refers to
a set of types that can be used to annotate parameters of the web service.
The placeholder q represents structural information about a string value.
Lastly, n can be replaced by any numeric value while n+ can take any
positive integer value.

The meaning of the web service specification language becomes apparent
when looking at the set of rules R. The specification consists of an identi-
fier for the host (H), some preconditions on the parameters (P) and some
postconditions giving guarantees about the return value (Q). Parameters
are marked as either required or optional. Each parameter has an identifier
and is restricted by a type and a semantic restriction on the value (Rv). The
latter takes one of the following forms:

� An interval restriction, requiring the actual parameter to be within a
numeric interval

46 CHAPTER 3. ANALYSIS

� An option restriction, requiring the actual parameter to take one value
from a set of given options

� A tuple restriction, requiring the actual parameter to be a tuple with
a further semantic restriction for each tuple element

� A list restriction, requiring the actual parameter to be a list with a
semantic restriction for each list element

� Not restricted – the actual parameter can take any value

� Unknown restriction – the web service is always expected to return an
erroneous response. The unknown restriction comes in handy when the
set of possible options is huge, e.g., when the parameter is required
to take a valid city name as value. Furthermore, a lot of web services
require an API key to be executed. Generally, valid API keys are not
known statically.

Note the subtle difference between a list restriction and a tuple restriction:
In a list restriction each list element must satisfy the same restriction and
there is no information about the length of the list while a tuple restriction
has a predefined length, an order among the elements and possibly a different
restriction for each tuple element.

The guarantees on the return value can further be conditioned on the
input parameters. For example, a web service may provide its output format-
ted as a JSON object or a XML tree based on whether the input parameter
format takes on the value json or xml. Each guarantee about the output
must further distinguish between success and failure of the execution. Ba-
sically, we expect every web service to possibly throw a checked exception.
Note that inherently, every call to a web service can also throw an unchecked
exception, e.g., if no connection to the web service can be established. In
this case, when calling a web service in TouchDevelop, the invalid value is
returned.

3.5.2 Derived Pre- and Postconditions

Let us call the requirements on the input parameters of a web service its
success condition Psucc. Further, let us enumerate all possible conditional
guarantees about the return value Q1, . . . , Qn with the i-th condition de-
noted Pi and the corresponding pair of guarantees named Qi

succ and Qi
fail.

The following can be assumed about a request to the web service using the
actual parameters p1, . . . , pm and receiving the response q:∨

i

(
Psucc(url, p1, . . . , pm) ∧ Pi(url, p1, . . . , pm) ∧Qi

succ(q) ∨

¬Psucc(url, p1, . . . , pm) ∧ Pi(url, p1, . . . , pm) ∧Qi
fail(q)

) (3.48)

3.5. WEB SERVICE SPECIFICATION 47

Note that the actual parameters p1, . . . , pm do not have to be in a specific
order. The enumeration is done to be able to talk about general parameters.
Nonetheless, the parameters are identified by a name.

The precondition Psucc is generated from the web service specification
for a given URL string. From the specification, a set of accepted parameters
is known with value restrictions for each parameter. Informally, the gen-
erated precondition states that for each key-value pair in the query, if the
key is equal to the name of a parameter, then the value must conform the
restriction of said parameter. More formally, the generated precondition is

Psucc(url, p1, . . . , pm) :=t
(
url, ? , ((h, L)→

t
(
L,& , (A(& , e→t

(
e,=, ((k, v)→

k = pname
1 → pRestriction

1 .P (v) ∧ . . . ∧ k = pname
m → pRestriction

m .P (v)))))

(3.49)

A beautiful inherent property of the precondition predicate is, that it
automatically normalizes the parameter list of the URL string. The appli-
cation of the forall-splits quantifier with the delimiter & removes the explicit
ordering of the parameters. Hence, the value of the Split expression predi-
cate is independent on the ordering of the parameters. More formally, given
bi 6=?, ki = k1i , . . . , k

mi
i , kji 6==, kji 6= &, vi = v1i , . . . , v

ni
i , vji 6==, and vji 6= &:

∀i ∈ N :

Psucc((b1, . . . , bn, ?,

k0,=, v0,&, . . . ,&,

kr,=, vr), x1, . . . , xr) =

Psucc((b1, . . . , bn, ?,

ki mod r,=, vi mod r,&, . . . ,&,

k(i+r) mod r,=, v(i+r) mod r), x1, . . . , xr) =

(3.50)

pname
x refers to the name of parameter x, and prestrictionx refers to the

restriction of parameter x. Table 3.1 lists all restriction types and the pred-
icate they generate. The predicate and the parameter name are both used
in the precondition Psucc.

An example shall give a demonstration. Suppose a web service located
at http://example.com requires the parameters len, a positive number, key,
a valid api-key, and format, either json or xml . The parameter format is
optional with json being the default value. The text in Figure 3.7 expresses
the corresponding specification in the defined language.

The placeholders S1, Q1, S2, and Q2 are structural string domains that
are introduced in the next section. From the parameter list, the following

48 CHAPTER 3. ANALYSIS

Restriction Restriction.P(v)

Interval(min, max) v ≥ min ∧ v ≤ max
Option({o1, . . . , on}) v = o1 ∨ . . . ∨ v = on

NTuple(σ, r1, . . . , rn)
t
(
v, σ, ((x1, x

′
2)→ r1.P (x1) ∧

t (x′2, σ, (x2, x
′
3)→ r2.P (x2) ∧ . . .))

List(σ, r) t (v, σ,A(σ, r.P))
Unrestricted True
Unknown Nondeterministic True or False

Table 3.1: Collection of parameter restrictions and their generated boolean
expression dependent on the parameter value v

http://example.com withParameters

required parameter len::number st value in (0; inf)

optional parameter format::string st value in (json; xml)

required parameter key::string st value is unknown

returns

when parameter format in (json) or default

success S1 fail Q1

when parameter format in (xml)

success S2 fail Q2

Figure 3.7: Example of a ficticious web service specification in the defined
language.

precondition is generated for an URL string url:

Psucc =t
(
url, ? , ((h, L)→

t
(
L,& , (A(& , e→t

(
e,=, ((k, v)→

k = len→ (v ≥ 0) ∧
k = format→ (v = json ∨ v = xml) ∧
k = key→ nondeterministic True or False))))

(3.51)

Furthermore, the following two result conditions are generated

P1 =t
(
url, ? , ((h, L)→

t
(
L,& , (A(& , e→t

(
e,=, ((k, v)→

k = format→ v = json

(3.52)

(If the parameter with the name format exists, then its value must be json)

P2 =t
(
url, ? , ((h, L)→

t
(
L,& , (¬A(& , e→t

(
e,=, ((k, v)→

k 6= format ∧ v 6= xml

(3.53)

3.6. STRUCTURAL ANNOTATIONS FOR STRING VALUES 49

(The parameter with the name format must exist. It must take the value
xml .)

Combining these conditions and placing them into Equation 3.48 yields
the following assumption on the state:

(Psucc ∧ ((P1 ∧S1)∨ (P2 ∧S2)))∨ (¬Psucc ∧ ((P1 ∧Q1)∨ (P2 ∧Q2))) (3.54)

3.6 Structural Annotations for String Values

Many web services do not simply return a a collection of data. For example,
the event listings API by The New York Times returns a message containing
the status, the copyright, the number of results, and an array of results, each
containing various values such as an event identifier, and a description of
the event. Hierarchical data formats such as XML and JSON are suited to
contain this data. Nonetheless, communication between the client and the
web service is based on passing string values.

Mainly, we are interested in annotating strings that represent XML or
JSON objects with their structural information. Luckily, the structure of
those two formats are very similar. Our annotations store the type of the
represented object. Furthermore, the annotations represent a set of children
that are guaranteed to exist.

The example given in Figure 3.8 motivates the needs for these annota-
tions. The pictured program creates a call to The New York Times event
listings API and stores the returned string in variable s. If s is valid, the
program parses the string as a JSON object in line 4. But how does our
analysis know that the string can be parsed as a JSON object? How does it
know whether the created object has a field status? Domains that capture
the value of a string as a sequence of characters, i.e., analyze the string
purely syntactically, such as the Bricks domain do not capture this informa-
tion directly. The analysis had to apply the parse semantics at the abstract
string value. Furthermore, even if we can represent the string as a sequence
of characters would the domain capture a lot of irrelevant information and
most likely be very costly.

Instead of tracking information about strings as sequence of characters,
we want to annotate strings that are returned by a web service with struc-
tural annotations. For those annotations, we propose a domain in the ab-
stract interpretation framework. The top element in the domain is an un-
known structure. The unknown structure conveys no information about the
string. We also define a bottom element with the additional purpose of
marking invalid string values.

The annotation for a hierarchical structure has a name, and a type
(such as JSON or XML), a possible value, information about whether it
is an array-like object (T – true, or F – false, and contains a set of struc-
tures, the children. Mathematically, the structural annotation is a 4-tuple

50 CHAPTER 3. ANALYSIS

(N,T, V,A,C). The type tells the analysis that the string can be parsed into
an object of this type. The children guarantee which fields can be accessed
after the object is created. Say, we want to prove that status is valid at
the end of the example in Figure 3.8. The annotation of the string value
of webÝdownload(url) is produced by the web service specifications. For a
successful API request, i.e., a request that is true to the constraints on the
parameters, a simplified structural annotation could be represented as:(

ROOT , JSON,>, F, {

(status, String,OK , F, ∅),
(num results, Integer, {x : x ≥ 0}, F, ∅)
(results, JSON,>, T, {

(event id , Integer,>, F),

. . .

})}
)

The analysis may determine a set of possible return structures. In our
example, the analysis cannot guarantee that the preconditions of the web
service are satisfied, because the API-key cannot be statically verified. Other
times, an analysis may not be able to decide whether a JSON or an XML
object is returned. In those cases, a least upper bound operator is needed to
join the possible annotations. Equation 3.55 defines the least upper bound
operator on the structural string annotations. Two annotations with a differ-
ent name are not comparable and the least upper bound is the top element.
The name does further function as key, which is needed to define the least
upper bound operator on the children. In the definition, T1 t T2 is the least
upper bound operator as defined on the types, and V1tV2 is the least upper
bound operator on the values, which are just a set domain of expressions.
Both domains are not defined by us.

(N,T1, V1, A,C1) t (N,T2, V2, A,C2) :=

(N,T1 t T2, V1 t V2, A,C1 t C2)
(3.55)

∀N1, N2, A1, A2 : (N1 6= N2 ∨A1 6= A2)→
(N1, T1, V1, A1, C1) t (N2, T2, V2, A2, C2) := >

(3.56)

Functionally, the children are an inverse set domain of structures; the
least upper bound of the two children {a, b} and {b, c} is {b}. The idea is the
following: A structure with child a shall guarantee that the corresponding
collection object contains the value a. Equation 3.57 gives a formal definition
of the least upper bound operator on the children. Note that, since the name
of the structure is also its key in the inverse set domain, no two structures in

3.6. STRUCTURAL ANNOTATIONS FOR STRING VALUES 51

1 var url := "http :// api.nytimes.com/svc/events/v2/listings.json

?&ll =40.756146 ,73.99021& api -key=" � data Ý key

2 var s := web Ý download(url)

3 if not s Ý is invalid then

4 var js := web Ý json(s)

5 var status := js Ý string("status")

Figure 3.8: Download of a listing of events from The New York Times API.
The results are sent in JSON format.

the same set can have the same name. The least upper bound operator only
keeps structures of which the name is present in both sets that are joined.
Those structures are then joined according to the definition in Equation
3.55.

{
(N1

1 , T
1
1 , V

1
1 , A

1
1, C

1
1),

(N2
1 , T

2
1 , V

2
1 , A

2
1, C

2
1),

. . . ,

(Nn
1 , T

n
1 , V

n
1 , A

n
1 , C

n
1)
}
t{

(N1
2 , T

1
2 , V

1
2 , A

1
2, C

1
2),

(N2
2 , T

2
2 , V

2
2 , A

2
2, C

2
2),

. . . ,

(Nm
2 , T

m
2 , V

m
2 , Am

2 , C
m
2)
}

:={
x t y

∣∣∣∃i, j :

x = (N i
1, T

i
1, V

i
1 , A

i
1, C

i
1) ∧ y = (N j

2 , T
j
2 , V

j
2 , A

j
2, C

j
2) ∧N i

1 = N j
2

}
(3.57)

The information about whether the structure is an array or not defines
how the children are accessed. The results-element in our example is an
array containing various events. There are no guarantees about the number
of elements the array contains, but each element in the array results is a
JSON object containing the value field event id and so on.

52 CHAPTER 3. ANALYSIS

Chapter 4

Evaluation

In this chapter, we want to demonstrate how our analysis works on TouchDe-
velop scripts. Note that a sound analysis will report every error in the
program. Hence, when analyzing TouchDevelop scripts with our proposed
analysis disabled, every error is reported. However, we expect this conser-
vative analysis to be imprecise. By enabling our analysis, but keeping the
setup otherwise identical, we expect less errors to be reported.

The goal of the evaluation is

� to gain insight about constructs where our analysis is able to improve
precision over the existing analyses.

� to find shortcomings of our analysis, i.e., constructs where our analysis
is not precise enough.

� to provide an estimation on the cost of our analysis.

� to gain insight about web service related bugs in real programs.

We evaluated the developed analysis against some real TouchDevelop
programs that were written by other people. All TouchDevelop scripts that
were created and published in the official online programming environment
provided by Microsoft are publicly available. We preselected possibly rele-
vant scripts by searching the published scripts for uses of

� webÝdownload

� webÝdownload json

� webÝdownload xml

� webÝcreate request

We randomly selected various scripts that communicate with at least one
web service. Each published script has its own public identifier. Published

53

54 CHAPTER 4. EVALUATION

Script ID # Warnings
without anal-
ysis

Warnings
with analysis

Execution
time [ms]
without
analysis

Execution
time [ms]
with analysis

udch 10 9 5931 10 360
quqncjye 4 4 92 259
izwjb 3 2 101 119

frtd 9 9 27 261 34 288
ledzijdu 25 25 3129 6967
lkpy 21 21 3628 7646

dewz 21 17 4131 5232
clgpxcwx 12 11 1712 2238
ydsn 18 17 2479 3345
xnjn 17 16 2439 3354

Table 4.1: Results of the evaluation. The second column lists the number
of warnings if our analysis is disabled, the third column lists the number of
warnings with the analysis enabled. The last two columns show the best
execution times of 5 executions. Some programs have genuine bugs; the
underlined scripts are corrections to the previous script.

scripts can be installed and modified. Modified scripts are published with a
new public identifier. However, a reference to the original script is stored.
Often, the modified script does not differ too much from its original. Hence,
we only want to evaluate one of the scripts derived from the same original, or
the original script itself. The exception to this are scripts that we modified
ourself to fix genuine bugs revealed by the analysis.

Each chosen TouchDevelop script is analyzed twice – once with our pro-
posed analysis enabled and once with the analysis disabled, but with other-
wise identical settings. We compare the returned warnings and the execution
time of both runs. Table 4.1 shows an overview of our findings. The execu-
tion time is measured as the time in milliseconds it takes from initializing
the analysis until the results are returned. The data provided in the table
is the shortest out of 5 time measurements.

The proposed analysis can only provide value to the TouchBoost tools if
web service specifications are provided. Unfortunately, as there is no unified
standard on how to write web service specification, we had to create the
specification in the intermediate representation proposed in Section 3.5 for
each web service our evaluation scripts are using.

4.1. RESULTS 55

1 private action getRandomJokeWithName (firstName:String ,lastName

:String) returns joke:String

2 var s := "http :// api.icndb.com/jokes/random?firstName=" �
firstName � "&lastName=" � astName

3 var js := web Ý download json(s)

4 if (js Ý is_invalid) then

5 joke := "Unable to download json"

6 else

7 var value := js Ý field("value")

8 joke := value Ý string("joke")

Figure 4.1: Excerpt from the published TouchDevelop script with the public
script identifier udch. The program communicates with The Internet Chuck
Norris Database, a RESTful web API. The specification [3] guarantees that
the response is a string representing a json object which contains the two
fields status and value. Our analysis is able to guarantee that the variable
value is valid, reducing the number of false alarms.

4.1 Results

The first example, which is given in Figure 4.1, uses the Internet Chuck
Norris Database, a RESTful web API, to retrieve a random joke and change
the word “Chuck” to the given first name, and the word “Norris” to the
given last name. The specification guarantee that a JSON object containing
the fields value and status is returned. Each string value for the two input
parameters is valid. However, since the input strings are not URL encoded,
the analysis cannot guarantee that the variable joke is valid at the end.
Nevertheless, our analysis can guarantee that the call valueÝstring("joke")

does not operate on an invalid value. Hence, opposed to a fully conservative
analysis without knowledge about the web service , our analysis does not
raise an alarm in line 7.

The second example, which is given in Figure 4.2, retrieves a weather
forecast for 5 days from the World Weather Online Free API. Our analy-
sis gives a warning about every access of a JSON object, starting at line
10. However, those warnings are justified and reveal genuine bugs in the
program. Firstly, the value of js1 is not checked against an invalid value
before line 10. Each request to a web service may potentially return an
invalid value. Secondly, the value of dataÝCity can literally take any string
value and is never url encoded before it is used in the URL string in line 8.
Consequently, the response is not guaranteed to be a JSON object. Assume
a user inputs the string Zürich&format=xml when prompted to give a city.
The URL string then contains the format-parameter twice. According to the
specification of the web service, the returned value is JSON object, if the
format-parameter takes the value json, and an XML object, if the format-
parameter takes the value xml . Simplified, the analysis uses the following

56 CHAPTER 4. EVALUATION

1 private action firstAction ()

2 if (records Ý Weather_index Ý singleton Ý City Ý is_empty) then

3 data Ý City := wall Ý ask_string("Please type in the City")

4

5 private action checkTemp ()

6 var url1 := "http :// api.worldweatheronline.com/free/v1/

weather.ashx?q="

7 var url2 := "&format=json&num_of_days =5& key=

vxdr7kb2sbejx4fn7c7vk6cr"

8 var url := url1 � data Ý City � url2

9 var js1 := web Ý download json(url)

10 var js2 := js1 Ý field("data")

11 var js3 := js2 Ý field("current_condition")

12 var js4 := js3 Ý at(0.0)

13 data Ý tempC := js4 Ý string("temp_C")

Figure 4.2: Excerpt from the published TouchDevelop script with the public
script identifier ledzijdu. The code communicates with the World Weather
Online Free web API [4]. Our analysis reveals various bugs in the program.

semantics to represent this contract: If there exists a key-value pair where
the key is equal to format and the value is equal to json, then the response
is a JSON object, or if there exists a key-value pair where the key is equal to
format and the value is equal to xml , then the response is an XML object.
In this example, both conditions hold, hence the response can be either of
the two. Equation 4.1 shows the actual split expression that implements the
condition on the JSON resonse.

t
(
url, ? , ((l, r)→

¬ t
(
r,& ,A(& , x→
t
(
x,=, (k, v)→ k 6= format ∧ v 6= json

)
))

(4.1)

We manually corrected the bugs in the example. The code snippet of
the corrected program is shown in Figure 4.3. After encoding the input
string, the analysis can guarantee that the response is a JSON object, be-
cause no additional key-value pair can exist. Furthermore, the program
checks whether the communication with the web service was successful by
checking the validity of the response. The analysis can guarantee that js1

is a valid JSON object and does not report a warning when a field is ac-
cessed in line 14. However, the analysis is not able to guarantee that the
field current condition exists and gives a warning in line 15. The reason for
this is that an unsuccessful response is not guaranteed to contain this field.
Assume a user requested the weather for alpha-centauri. In this case, the
web service returns

{ "data":

4.1. RESULTS 57

{ "error": [

{"msg": "Unable to find any matching weather location

to the query submitted!" }] }}

This example showed a lot of cases where the analysis is able to discover
bugs and why the bugs are discovered. A slight modification to the program
code also makes shortcomings of static analysis visible: Assume we had
statically determined that dataÝCity takes the value Zürich. In this case,
the request is guaranteed to be successful. However, it is very impractical
to specify all valid values the parameter q can take. Furthermore, it is
impossible to specify all valid values for the parameter key, because this
would mean that the web service had revealed valid keys, completely ruining
the purpose of the API key. Unfortunately, a lot of stateless web services
employ an API key to deny individual users from excessively requesting their
service. Hence, checking preconditions on the passed parameters can often
not give guarantees on the success of the call.

1 private action firstAction ()

2 if (records Ý Weather_index Ý singleton Ý City Ý is_empty) then

3 data Ý City := wall Ý ask_string("Please type in the City")

4

5 private action checkTemp ()

6 var url1 := "http :// api.worldweatheronline.com/free/v1/

weather.ashx?q="

7 var url2 := "&format=json&num_of_days =5& key=

vxdr7kb2sbejx4fn7c7vk6cr"

8 var url := url1 � web Ý url_encode(data Ý City) � url2

9 var js1 := web Ý download_json(url)

10 if js1 Ý is invalid then

11

12 else

13 var js2 := js1 Ý field("data")

14 var js3 := js2 Ý field("current_condition")

15 var js4 := js3 Ý at (0.0)

16 data Ý tempC := js4 Ý string("temp_C")

Figure 4.3: Manual correction of the previous example. The whole script
has the public script identifier dewz.

Figure 4.4 shows a TouchDevelop script that communicates with a web
service that does not require input parameters and accordingly has no pre-
conditions. Our analysis is able to locate the host and retrieve information
about the returned JSON object. Thereby, the analysis does not report a
warning in line 12, as addr cannot take an invalid value. Note that the way
the split expressions are defined, the analysis would have also been able to
locate the host if the URL string did not contain a question mark and the
optional parameter. If a string does not contain the split delimiter symbol,
then the left hand side of the split is the string itself.

58 CHAPTER 4. EVALUATION

1 private action display info()

2 wall Ý clear

3 wall Ý set reversed(true)

4 if (web Ý is connected) then

5 ("Network details for the " � web Ý connection type � "

connection:") Ý post to wall

6 var r := math Ý random (10000.0)

7 var data1 := web Ý download_json("http :// ifconfig.me/all.

json?" � r

8 if data1 Ý is invalid then

9 "No network connection." Ý post to wall

10 else

11 var addr := data1 Ý string("ip_addr")

12 var s := "IP Address: " � addr

13 code Ý word picture(s ,72.0) Ý post to wall

14 __key_index := 0

15 __key_collection) := data1 Ý keys Ý copy

16 while ((__key_index) < (__key_collection Ý count)) do

17 if not __key_collection Ý at_index(__key_index) Ý equals(

"ip_addr") then

18 (__key_collection Ý at index(__key_index) � ": " �
data1 Ý string(__key_collection Ý at index(

__key_index))) Ý post to wall

19 __key_index := __key_index + 1

20 else

21 "No network connection." Ý post to wall

Figure 4.4: Excerpt of a TouchDevelop script that requests the service of
ifconfig.me [5]. This is a non-standard example, as it is a service that does
not require input parameters and hence the caller has no preconditions to
fullfill. The public identifier of the script is rxbeb.

4.2 Discussion

In this section we try to answer the questions that were implicitely posed
at the beginning of this chapter. That is, we want to answer setups, where
our analysis is precise enough, and setups where the analysis fails to prove
correctness. Furthermore, we want to discuss the impact of our analysis
on execution time, and what bugs real programmers made with respect to
values related to calls to web services.

Analysis of calls to web services depends above all else on the access-
ability of web service specification. Hence, an analysis must be able to
determine which web service is invoked. Our analysis makes a simple check
against the base path of each registered web service. The check compares
the left hand side of the first occurrence of a question mark with the base
path. If no question mark is contained in the URL string, the whole string is
compared against the base path. Fortunately, in most cases, the base path
can statically be determined in the URL string, because most scripts store

4.2. DISCUSSION 59

this information as a constant.
Once the specification are retrieved, the analysis checks the precondi-

tions. Here, static analysis is often not beneficial, because a lot of stateless
web services require an API key. Also, many parameters, such as city names,
have unknown preconditions which must statically assumed to be violated.

On the other hand, the analysis is theoretically able to prove that the
preconditions are always violated. However, dynamic testing with an arbi-
trary input would reveal such a bug. Hence, programs that are guaranteed
to violate the preconditions should not occur in reality.

For the sake of the discussion, let us look at a syntetic example in Figure
4.5 where our analysis is able to prove the preconditions. The string value
of url is represented as

L
[
B
[
{c
[
http://testnumericvalues.com?length=

]
o [v̄]}

]1,1]
where v̄ is a symbolic variable that has the same value as v, i.e., a number
greater than or equal to 0. The analysis then probes for the web service
specification by trying to invalidate the predicate

t
(
url, ? , (l, r)→ l 6= http://testnumericvalues.com

)
It proves the predicate false and asks the intermediate representation of the
specification for the conditions on the parameters. The conditions are given
as the predicate

t
(
url, ? , ((l, r)→
t
(
r,& , (A(&, e→
t
(
e,=, (k, v)→ k 6= length ∨ v ≥ 0

)
))

The fail-condition is the negation of this predicate. The predicate is trans-
lated as

¬ t
(
url, ? , ((l, r)→

t
(
r,& , (A(&, e→
t
(
e,=, (k, v)→ k 6= length ∨ v ≥ 0

)
)) =

¬ t
(
L
[
B
[
{c
[
length=

]
o [v̄]}

]1,1]
,& , (A(&, e→

t
(
e,=, (k, v)→ k 6= length ∨ v ≥ 0

)
)) =

¬ t
(
L
[
B
[
{c
[
length=

]
o [v̄]}

]1,1]
,=, (k, v)→ k 6= length ∨ v ≥ 0

)
=

¬(L
[
B
[
{c
[
length}

]]1,1] 6= length ∨ L
[
B [{o [v̄}]]1,1

]
≥ 0) =

L
[
B
[
{c
[
length}

]]1,1]
= length ∧ L

[
B [{o [v̄}]]1,1

]
< 0 =

True ∧ False = False

60 CHAPTER 4. EVALUATION

1 action handconstructed ()

2 var v := wall Ý ask_number("length?")

3 if(v<0) then

4 v := 0

5 var url := "http :// testnumericvalues.com?length=" � v

6 var r := web Ý download(url)

7 if(not r Ý is_invalid) then

8 var js := web Ý json(r)

9 var status := js Ý string("status")

Figure 4.5: Syntetic TouchDevelop program that communicates with the
ficticious testnumericvalues API

While the usefulness of parameter checking for the sake of proving or
disproving preconditions is limited, it can be a useful tool to derive the
format of the response. Various web services provide an option to choose
the format of the response. For example, the World Weather Online Free
API, as shown in Figure 4.3, returns either a JSON object or an XML
object, depending on the value of the parameter format. Usually, such a
format-parameter can only take a small amount of different values.

Our analysis is also able to detect possible URL injection with malicious
parameters. Thanks to the Maybe Contained Character codomain in the
Abstract Strings, the analysis can detect whether the value of a parameter
can possibly contain an ampersand as parameter separator, accompanied by
various other, unwanted parameters.

Many genuine bugs in TouchDevelop scripts are due to not checking the
response for validity. Even if the URL satisfies the constraints imposed by
the specification, one must always assume the possibility of the web service
not being available. For example, the script in Figure 4.5 must check whether
the response is valid in line 7, even though the predicate for the fail state
is false. Other subtle bugs that often occur are due to not encoding strings
that are plugged into an URL string. Even if a parameter has no constraints
and can take on arbitrary string values, we may not be able to prove the
preconditions because the substring may itself contain other parameters.
These kinds of bugs are generally very bad, because they do not appear to be
a problem when a user sends expected input, but they let users manipulate
the execution with malicious input.

The additional cost of the analysis is only estimated based on measured
execution times. The measurements show a clear increase in execution time
if the analysis is enabled. The mean slowdown is about 50% of the execution
time without the analysis enabled. The cost seems to not scale over propor-
tional in the size of the program, however, the set on which we evaluated our
analysis is not large enough to make an informed guess on the complexity.
The additional cost comes from maintaining a Relational Bricks analysis for

4.2. DISCUSSION 61

the Split expressions, from keeping the structural string annotations, and
from evaluating the Split expression predicates on the domain.

62 CHAPTER 4. EVALUATION

Chapter 5

Related Work

The analysis we are going to propose in this work is heavily dependent on
static information about string values. The process of deducing and keeping
track of information about string values is called string analysis. Depending
on the goal of the analysis, different information is useful. Hence, various
different kind of string analyses exist. In this work, we are concerned about
static analysis, that is, knowledge about the behavior of a program without
actually executing it. In that regard we are mostly interested in static string
analysis.

Christensen et al. [8] describe a string analysis that abstracts string
values using a regular language. Their analysis has been implemented to
analyze Java strings. However, the analysis has difficulties dealing with
strings stored in heap variables.

Choi et al. [7] solve the problem of dealing with heap variables and inte-
grate constant propagation by designing a string analyzer that uses abstract
interpretation techniques. Abstract interpretation is a mathematical frame-
work for static analysis in which we also fit our approach. One of their main
contributions is the design of a widening operator. Crafting this widening
operator is made possible by choosing to represent only a subset of regular
languages.

Kim and Choe [20] have developed a string analysis that can analyze
context-free languages. The analysis uses abstract interpretation techniques.
The abstract domain they propose is a predicate domain on transitions of
pushdown automata that read the string. However, this analysis can only
check whether a string belongs to a certain grammar which only allows some
syntactic checks.

Constantini et al. [10] also build their analysis in the abstract interpre-
tation framework. They develop different abstract domains with different
trade-offs in complexity and expressiveness. One of their less expressive
but in return cheaper analysis approximates string values as a set of maybe
contained characters. While information about maybe contained characters

63

64 CHAPTER 5. RELATED WORK

does not sound like much, we actually employ this domain in our analysis.
Their two most expressive abstract domains are called the Bricks domain
and the String Graph domain. Both domains capture character inclusion
and order. Their approach is generic and – thanks to abstract interpretation
– modifiable. The Bricks domain is an approximation to regular expressions.
In this work, we leverage the benefits of the Bricks analysis, i.e., the extensi-
bility provided by its formalization in the abstract interpretation framework,
the simplicity and concurrent expressiveness of the representation, and the
fact, that it has already been implemented in the Sample analyzer. The
Bricks analysis is representing possible values of a string through building
blocks containing concrete string values. Our augmentation to the Bricks
analysis allows the storage of relational information, including knowledge
of non-string values, by linking it with other domains. A more detailed in-
troduction to the Bricks analysis is provided in Section 2.6. Our proposed
augmentation is described in Section 3.2.

One particular use of string analysis is the analysis of executable code.
SQL queries, HTML pages, Latex documents or even Java code is statically
just plain text that can be generated by a program. In our analysis, we
want to formalize the constraints that the specification of a procedure that
is executed on a remote machine over a network poses on the URL string.
Recent work by Tripp et al. [23] is also concerned about the analysis of
string values used in URLs. Their analysis addresses the question of whether
a malicious agent can possibly manipulate an URL String in a JavaScript
environment to redirect a seemingly harmless request to a fake web host. Our
analysis also produces a warning, if it cannot guarantee the absence of such
behavior, e.g., if the code does not filter user input used in parameters by
encoding URL reserved characters. However, our analysis is not especially
targeted towards URL safety. Furthermore, our analysis is purely static
while Tripp et al. propose a hybrid approach.

Chapter 6

Conclusion

In this work we developed a static analysis for string values in the context of
communication over a network between the analyzed client program and a
remote software system, i.e., a web service. The analysis does not track the
state of the web service, hence, the analysis can only be precise if the web
service is stateless, i.e., if the state is kept at the client side. All information
must be passed to the web service encoded in an URL string.

We developed an augmentation to the Bricks string analysis, a string
analysis based on regular expressions that operates in the abstract inter-
pretation framework. The augmentation relates the string representation of
arbitrary-typed values to their original value by introducing symbolic vari-
ables. The relation is necessary to check non-string parameters that are
plugged into the URL query in a specialized domain.

We formalized a predicate logic for URL strings. The logic compares
individual key-value pairs against the constraints on the formal parameters
imposed by the web service specifications. Based on the observation that the
individual values are separated in the URL string by special delimiter char-
acters, our higher-order logic predicate Split expression divides the string
at those delimiters and applies a predicate to both substrings. We also in-
troduced a forall-splits quantifier, a predicate that recursively applies Split
expressions. An inherent property of the forall-splits quantifier is the loss of
ordering of the string parts. The ordering of parameters in the URL string is
irrelevant; the parameter list key1=val1&key2=val2 and the parameter list
key2=val2&key1=val1 are equivalent. By applying the forall-splits quantifer
on the parameter list of an URL string, normalization is obtained for free.

Inspired by the Web Application Description Language, we defined a
language for web service specifications. The language is more expressive
in terms of constraints on values of both, the parameters encoded in the
URL string and the string returned by the web service. To specify the
guarantees on the values of the returned strings, we defined structural string
annotations. The annotations are defined as a lattice and fit in the abstract

65

66 CHAPTER 6. CONCLUSION

interpretation framework.

We implemented our analysis as part of the TouchBoost static analysis
tool suite. The implementation works on a control flow graph representation
of TouchDevelop scripts.

We evaluated the implementation on real TouchDevelop scripts that were
written by others. Often, the analysis was able to either dispose of a false
alarm, or reveal a genuine bug.

6.1 Future Work

Our implementation is restricted to analyzing programs that communicate
with stateless web services. In a stateless web service, the state must be
kept in the client and all necessary information must be provided by each
call. Hence, there is no additional protocol on the order in which different
methods of the web service must be called – each call can be observed
in isolation and each method can be seen as an individual web service.
The contracts given by the specifications may further only depend on the
parameters passed in a single request.

Analyzing programs that communicate with a stateful web service could
be interesting. However, reasoning about multiple states poses new chal-
lenges. Let us briefly discuss changes imposed on the analysis and possible
solutions. In summary, we can think of the following new challenges:

� The analysis must maintain the state of the web service separately
from the state of the client.

� Semantics must be defined that transition the state of the web service
after, a HTTP request.

� Nondeterminism such as the elapsed time between two subsequent
HTTP requests may alter the state of the web service before an HTTP
request.

An analysis that investigates communication between a program and a
stateful web service must maintain both, the state of the client and the
state of the web service. A basic approach would be to keep the state of
the program and the state of the web service in a cartesian product domain.
However, a program might communicate with multiple web services. Hence,
either is the domain that keeps the state of the web service able to extend
itself every time the analysis discovers communication with a new web ser-
vice, or an analysis that collects all accessed web services before the actual
state is initialized. However, the collecting analysis must already capture
the state of the client for URL analysis. In practice, our proposed analysis
could be applied to collect the accessed web services.

6.1. FUTURE WORK 67

Keeping a separate state for the web service does not suffice. Additional
semantics for HTTP requests must be developed based on the web service
specifications. Note that statements that do not send a request to the web
service must not alter the state of the web service. Nondeterminism, e.g., a
timeout if too much time passes between two subsequent requests, could be
modeled by over approximation. For example, we do not statically how much
time elapsed between two subsequent requests. Hence, before transitioning
the state of the web service using the semantics of the request, an upper
bound on possible pre-states needs to be computed.

68 CHAPTER 6. CONCLUSION

Bibliography

[1] URL: http://developer.nytimes.com/.

[2] URL: https://www.touchdevelop.com/.

[3] URL: http://www.icndb.com/api/.

[4] URL: https://developer.worldweatheronline.com/page/documentation.

[5] URL: http://ifconfig.me/.

[6] David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael
Champion, Chris Ferris, and David Orchard. Web services architecture.
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/, 2004.

[7] Tae-Hyoung Choi, Oukseh Lee, Hyunha Kim, and Kyung-Goo Doh. A
practical string analyzer by the widening approach. In APLAS, pages
374–388, 2006.

[8] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach.
Precise analysis of string expressions. In SAS’03, pages 1–18, 2003.

[9] Agostino Cortesi. Widening operators for abstract interpretation.
In Software Engineering and Formal Methods, 2008. SEFM’08. Sixth
IEEE International Conference on, pages 31–40, 2008.

[10] Giulia Costantini, Pietro Ferrara, and Agostino Cortesi. Static analysis
of string values. In ICFEM’11, 2011.

[11] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation
of fixpoints. In POPL’77, pages 238–252, 1977.

[12] Patrick Cousot, Radhia Cousot, Jerôme Feret, Laurent Mauborgne,
Antoine Miné, David Monniaux, and Xavier Rival. The astrée analyzer.
In Programming Languages and Systems, pages 21–30. 2005.

[13] Ádám Darvas and K Rustan M Leino. Practical reasoning about in-
vocations and implementations of pure methods. In Fundamental Ap-
proaches to Software Engineering, pages 336–351. 2007.

69

70 BIBLIOGRAPHY

[14] Roy T Fielding and Richard N Taylor. Principled design of the modern
web architecture. ACM Transactions on Internet Technology (TOIT),
pages 115–150, 2002.

[15] Roy Thomas Fielding. Architectural styles and the design of network-
based software architectures. PhD thesis, University of California,
Irvine, 2000.

[16] Raphael Fuchs. Inferring counter-examples from abstract error states
via backward analysis. Master’s thesis, ETH Z”urich, 2014.

[17] Gartner. Worldwide pc shipments declined 6.9 percent in fourth quarter
of 2013. http://www.gartner.com/newsroom/id/2647517, 2014.

[18] Gartner. Worldwide tablet sales grew 68 percent in
2013, with android capturing 62 percent of the market.
http://www.gartner.com/newsroom/id/2674215, 2014.

[19] Marc Hadley. Web application description language.
http://www.w3.org/Submission/2009/SUBM-wadl-20090831/, 2009.

[20] Se-Won Kim and Kwang-Moo Choe. String analysis as an abstract
interpretation. In VMCAI’11, pages 294–308, 2011.

[21] Daniel Schweizer. Overapproximating the cost of loops. Master’s thesis,
ETH Z”urich, 2012.

[22] Nikolai Tillmann, Michal Moskal, Jonathan de Halleux, and Manuel
Fahndrich. Touchdevelop: programming cloud-connected mobile de-
vices via touchscreen. In Proceedings of the 10th SIGPLAN symposium
on New ideas, new paradigms, and reflections on programming and soft-
ware, pages 49–60, 2011.

[23] Omer Tripp, Pietro Ferrara, and Marco Pistoia. Hybrid security analy-
sis of web javascript code via dynamic partial evaluation. In ISSTA’14,
2014.

	Abstract
	Introduction
	Background
	TouchDevelop
	Static Program Analysis
	Abstract Interpretation
	TouchBoost
	Web Services
	Bricks
	Maybe Contained Character Analysis

	Analysis
	Expressions
	Relational Bricks
	Symbolic Variables
	Abstract String
	Abstract Strings with Maybe Contained Character Domain

	Split Expressions
	Split Expression as a Predicate
	Forall-Splits Quantifier

	Split Expression in the Abstract Domain
	Introducing the Abstract Evaluation of Split Expressions
	Split Operation on Relational Bricks
	Termination of Split Expressions

	Web Service Specification
	Intermediate Representation of Web Service Specification
	Derived Pre- and Postconditions

	Structural Annotations for String Values

	Evaluation
	Results
	Discussion

	Related Work
	Conclusion
	Future Work

