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Abstract

Envision is a language-agnostic open-source IDE that abstracts and visualizes
the syntactic structure of software projects. Its goal is to minimize syntactic
clutter and convey as much information as possible visually to reduce the time
developers spend reading code, making them more productive. In Envision,
program code is internally represented and stored as an abstract syntax tree
and it features a built-in version control system (VCS) that works on the
basis of nodes in the abstract syntax tree instead of text lines like traditional
systems.

In this thesis we continue the development of Envision’s VCS, extending
it with a formal model and proof of correctness for its diff algorithm. Fur-
thermore we present a new merge algorithm, systematically designed with
modularity and verifiability in mind. We introduce the abstract models be-
hind its implementation and provide an argument for the correctness of the
algorithm.

The resulting system exhibits a number of advantages over traditional
text-based version control systems such as semantic classification of changes
in the code, improved conflict detection and the ability to configure and
extend how conflicts are resolved automatically. Additionally, the precise
descriptions of the algorithms and the arguments for their correctness give
confidence to future developers of Envision and will ultimately reassure users
operating these tools.
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Chapter 1

Introduction

1.1 Motivation

Envision1 is an IDE for object-oriented programming languages [1]. It fea-
tures a graphical code editor that visualizes the syntax structures of software
projects with the goal of abstracting from the syntactic rules of a language.
Internally, the projects are represented as abstract syntax trees. Envision
is an open-source project and is being developed mainly in the context of
Dimitar Asenov’s PhD work at ETH Zurich.

Traditional code editors and IDEs are text editors at their core. Simi-
larly, existing version control systems like Git2 and SVN3 and their employed
difference and synchronization algorithms (often just called diff and merge)
work on the basis of text files and lines, ignoring the highly structured nature
of program code. This often results in diff outputs lacking context, making
it harder for the user to make sense of the presented information. More
severe issues exist with merge algorithms which can introduce bugs by auto-
matically merging pieces of code that are related but not directly adjacent.
In cases where conflicts are detected, the resulting output is at times more
confusing than helpful.

1.2 Related work

There already exist different approaches to merging documents that are struc-
tured as trees. Lindholm [5] proposed a way to merge XML documents mod-
eled as ordered trees of nodes with unique identifiers. Unlike in Envision

1dimitar-asenov.github.io/Envision
2git-scm.com
3subversion.apache.org
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however, the relationship of a child to its parent is not labeled, thus the
approach cannot guarantee the syntactic validity of the produced AST.

Westfechtel [7] presented a language-agnostic merge algorithm for ASTs
that guarantees context-free correctness of the merged tree. This algorithm
however does not take move operations into account and focuses on the de-
tection of conflicts, not their resolution.

The development team of semanticmerge4 and Plastic SCM 5, a text-
based VCS, recently published an article describing some of their efforts to
improve their text-based diff tool6. Similar to Envision’s VCS, their tool
tries to identify moves of entities and classifies changes as additions, dele-
tions, moves or updates. This shows that the desire for more concise and
understandable diffs has been recognized by the industry and solutions sim-
ilar to that of Envision are being developed.

1.3 Existing Envision VCS and goals

In context of his master thesis [6], Martin Otth designed and implemented the
core of a version control system for Envision using Git as a back end. Through
development and testing of this system, we gained a lot of understanding
about version control of trees and revealed a few correctness issues in the
original design. One such issue was that the design relied on an assumption
about the encoding of ASTs in relation to git diff that turned out to be
false. This could result in the AST Diff algorithm producing incomplete
results. Due to the large scope of Otth’s project, time was insufficient to
explore these issues in greater depth.

The goal of this work is to investigate two core modules of that system –
namely the AST Diff and AST Merge algorithms – in terms of correctness
and to make changes where appropriate. The first step to achieving this goal
is to formally define what the requirements for these algorithms are. This
includes a formal model for describing the differences between two abstract
syntax trees as they are used by Envision. Once we have precisely defined
the requirements we systematically check and revise the algorithms until we
can show that they produce the expected output.

Once this task is completed, another goal is to find a way to allow for cus-
tomizable behavior of the AST Merge algorithm by plug-in-like components.
This would not only make it easier for developers to extend the Envision ver-

4semanticmerge.com
5plasticscm.com
6codicesoftware.blogspot.com/2015/07/towards-semantic-version-control.

html
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sion control system with new and better default behavior but it would also
allow users to adjust these modules to work best for their needs, tailoring
them to a particular project or workflow.

1.4 Report structure

The following chapter 2 will introduce some fundamental concepts used
throughout this report and define a formal model of what a diff of two ab-
stract syntax trees contains. In chapter 3 we present our AST Diff algorithm
and show that it complies with the formal model. In chapter 4 we present
a redesigned AST Merge algorithm and two modules that work as plug-in
components. We then give an argument for the correctness of the AST Merge
algorithm and one of the components in chapter 5. An evaluation in chapter
6 highlights the advantages of the presented system over traditional text-
based version control systems. Chapter 7 explains some technical aspects of
the implementation that are less evident. In chapter 8 we lay out possible
work for the future before drawing our conclusions in chapter 9.
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Chapter 2

Fundamental Concepts

This chapter serves to introduce some core concepts and terms used through-
out this report. Apart from some nomenclature, we present how ASTs and
AST nodes are represented and encoded by Envision. These definitions will
be the foundation on which we build in the following chapters.

2.1 Nomenclature

Throughout this report, we are often going to use the following terms. These
definitions apply unless explicitly stated otherwise.

• AST is short for abstract syntax tree. Sometimes just called tree.

• An AST node or just node is a single node of an AST.

• line of text or simply line refers to a line in a file, delimited by newline
characters and identified by its content (not its line number).

• node line refers to the concrete, one-line, textual representation of a
given AST node in a file.

• AST Diff refers to the tree-based diff algorithm presented in chapter
3.

• AST Merge refers to the tree-based merge algorithm presented in chap-
ter 4.

• The encoding of an AST is the set of node lines that store the nodes of
the AST (details in section 2.3).

• The line diff of encodings EA, EB is the union of the outputs of git

diff over all files of EA and EB. Also denoted lineDiff(EA, EB).
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2.2 Abstract Syntax Trees (ASTs)

In Envision, ASTs consist of AST nodes which are linked together. An AST
node consists of the following:

• Label : The label specifies the relationship with the parent node (e.g.
then and otherwise for the bodies of an if-statement). Nodes that are
elements of lists are labeled with an integer specifying their index.

• Type: The type of the node (e.g. Method or Expression).

• ID : UUID1 of the node. The ID defines node identity.

• ParentId : UUID of the parent node. This is {0000...00} for the root
of the AST.

• Parent : A pointer to the parent node. This is NULL for the root of the
AST.

• Value: Only leaf nodes may have a value.

2.2.1 Definition of Valid Form

We consider an AST T to be of valid form if and only if it satisfies both of
the following properties.

1. Node IDs are unique: ∀n, n′ ∈ T : n.id = n′.id→ n = n′

2. No two children of a node have the same label: ∀n, n′ ∈ T : n.parent =
n′.parent ∧ n.label = n′.label→ n = n′

2.3 Encoding of ASTs and AST nodes

We encode an AST node as a node line. A node line is a single line of text
containing all members of the node except for the parent pointer. The exact
format is shown in figure 2.1. Values are stored in the form .T v where T

specifies the primitive type of the value and v is the value. T is S for strings,
I for integers and F for floats. Newline characters ’\n’ are escaped in v.

The encoding of an AST is the set of node lines encoding its nodes. We
divide the AST up into multiple components called persistent units. Each

1Universally Unique Identifier. See RFC 4122: www.ietf.org/rfc/rfc4122
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Label

value Text

Type

UUID

{22ba...ca} {3c3e...27}

Parent

.

Value

S Hello

Figure 2.1: Example of Envision’s node encoding

Label

value PersistenceNewUnit

Type

UUID

{22ba...ca} {3c3e...27}

Parent

Figure 2.2: Example of persistent unit linking

persistent unit corresponds to one file in which we store the node lines of all
nodes belonging to that persistent unit.

To indicate that a particular node is stored in a different persistent unit,
instead of a line encoding the node, a line with the special type
PersistenceNewUnit is stored. The actual encoding of the node can then
be found in a file named after the linked node’s ID. Figure 2.2 shows an
example where the node with the ID 22ba...ca is stored in a different file
named 22ba...ca. This file would then contain the line from figure 2.1 and
all descendants of that node (or further link to the persistent units containing
them).

In an encoding of a valid AST all node lines are stored on exactly one line
of text and the ID of each node line and the node line itself is unique. The
only exception to this are lines used for persistent unit linking i.e. lines with
type PersistenceNewUnit which have the same ID as the node they refer
to. For all considerations in this report, such lines are ignored and treated
as if they did not exist.

2.4 Definition of Changes

In this section, we introduce a formal model that defines precisely the set
of differences between two ASTs. In practice, when comparing two ASTs
most often one of the trees will represent a chronologically later version of
the other and the differences will describe changes that have been made by
the user. For this reason, because of convention and to help intuition, we
shall use terms that only make sense in the context of chronological order
while keeping in mind that the principles apply regardless of time or order.

We introduce the notion of a change object that describes how a single
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node changes from one version of the AST TA to another version TB. A
change object is a tuple of the form

change :: (id, nodeA, nodeB, kind, labelF lag, typeF lag, valueF lag) (2.1)

where id is a node ID, nodeA and nodeB are pointers to nodes (or NULL),
kind ∈ {Insertion,Deletion,Move, Stationary} and
labelF lag, typeF lag, valueF lag ∈ {True,False}. We define the predicate

isFake(change) :⇐⇒ change.kind = Stationary∧

¬(change.labelF lag ∨ change.typeF lag ∨ change.valueF lag)

It is possible that a node line exists is both encodings but is still included
in the line diff. This leads to the creation of changes that only represent
modifications in the encoding but not the AST. The isFake predicate will be
used to filter such changes.

In addition to sets of nodes, ASTs can be interpreted as sets of IDs. We
use the shorthand

id ∈ T :⇐⇒ ∃node ∈ T : node.id = id

For two ASTs TA, TB and id ∈ TA ∪ TB, we define the function

ChangeMapTA,TB
: id 7→ change such that

• change.id = id

• change.nodeA = node ∈ TA : node.id = id if such a node exists and
NULL otherwise.

• change.nodeB = node ∈ TB : node.id = id if such a node exists and
NULL otherwise.

• change.kind = Insertion↔ id 6∈ TA ∧ id ∈ TB

• change.kind = Deletion↔ id ∈ TA ∧ id 6∈ TB

This leaves cases where id ∈ TA ∧ id ∈ TB. Let nA ∈ TA : nA.id = id and let
nB ∈ TB : nB.id = id.

• change.kind = Move↔ id ∈ TA∧id ∈ TB∧nA.parentId 6= nB.parentId

• change.kind = Stationary ↔ id ∈ TA ∧ id ∈ TB ∧ nA.parentId =
nB.parentId

12



• change.labelF lag = True↔ id ∈ TA ∧ id ∈ TB ∧ nA.label 6= nB.label

• change.typeF lag = True↔ id ∈ TA ∧ id ∈ TB ∧ nA.type 6= nB.type

• change.valueF lag = True↔ id ∈ TA ∧ id ∈ TB ∧ nA.value 6= nB.value

From this function, we now define the set

Changes(TA, TB) := {change ∈ ChangeMapTA,TB
(TA∪TB) : ¬isFake(change)}

By definition, for any ID, this set contains at most one change with
change.id = ID. This set of changes describes the transformation of TA into
TB. We aim to compute this set in the AST Diff algorithm as an intermediate
result.

2.4.1 Child structure changes

Additionally to the set of changes between two trees, we want to identify
nodes whose child structure changes. This would include nodes that gain or
lose one or more children and nodes whose children change their label. To
this end we define the set StructChanges(TA, TB) as follows.

id ∈ StructChanges(TA, TB) :⇐⇒ ∃change ∈ Changes(TA, TB) :

(change.kind ∈ {Insertion, Move} ∧ change.nodeB.parentId = id)∨

(change.kind ∈ {Deletion, Move} ∧ change.nodeA.parentId = id)∨

(change.labelF lag ∧ change.nodeA.parentId = id)

Again, we aim to compute this set in the AST Diff algorithm as an inter-
mediate result.

2.4.2 Extension of change objects

We extend change objects with an additional structF lag which will carry
the information of the StructChanges set resulting in a more unified repre-
sentation of differences. Let (a, . . . , b) ⊕ c = (a, . . . , b, c). We define the set
of these extended changes XChanges(TA, TB) as follows.

change ∈ Changes(TA, TB) =⇒ change⊕ structF lag ∈ XChanges(TA, TB)

where structF lag ≡ change.id ∈ StructChanges(TA, TB)
(2.2)

13



id ∈ StructChanges(TA, TB) ∧ @change ∈ Changes(TA, TB) : change.id = id

=⇒ xChange ∈ XChanges(TA, TB)

where xChange.id = id,

xChange.nodeA ∈ TA ∧ xChange.nodeA.id = id,

xChange.nodeB ∈ TB ∧ xChange.nodeB.id = id,

xChange.kind = Stationary, xChange.structF lag = True,

xChange.labelF lag = xChange.typeF lag = xChange.valueF lag = False.
(2.3)

There are no other elements in XChanges(TA, TB).
We effectively extend the already existing changes with the appropriate

flag and add new changes for IDs in StructChanges for which there is not yet
a change to be extended. This set XChanges(TA, TB) shall be the output of
the AST Diff algorithm.

14



Chapter 3

The AST Diff Algorithm

In section 2.4 we have precisely defined the set of differences between two
ASTs as a set of change objects. In this chapter, we present our AST Diff al-
gorithm for computing this set change objects and then provide a proof of its
correctness. The presented algorithm is largely based on the one introduced
by Otth [6]. It includes slight modifications that help prove its correctness.

When Otth designed and implemented the core of the version control
system, Envision did not encode the parent ID in the node line explicitly but
implicitly by the order and indentation depth of the node lines. Because of
this, moving a node did not directly result in a difference in the respective
node line. The assumption was that the node line would change location in
the file and thus appear in the line diff. This assumption turned out to be
false, as it is possible for a node line to stay at the same location and to keep
its indentation depth the same as in the original version.

To correct this, we changed the encoding of nodes to explicitly store the
parent. This has the consequence that location and indentation of node lines
become irrelevant and moving a node now directly results in a different node
line. This will be vital in proving the correctness of the AST Diff algorithm.

3.1 Formal interface of the AST Diff algo-

rithm

Let TA and TB be the two ASTs whose differences shall be computed. The
algorithm takes the following inputs

• The encoding EA of TA

• The encoding EB of TB

15



• The line diff of EA and EB

and returns

• The set XChanges(TA, TB)

3.2 Assumptions about the line diff

We assume the line diff of encodings EA and EB shows a line of text l as
a removal if l is present in EA at some location but not in EB. Similarly,
we assume the line diff shows a line l as an addition if l is in EB but not in
EA. Further, we assume all lines shown as removals are present in EA and
all lines shown as additions are present in EB. Formally, we assume the line
diff gives us two sets lineAdditions and lineRemovals such that

EB ⊇ lineAdditions ⊇ {l ∈ EB with l 6∈ EA} = EB − EA (3.1)

EA ⊇ lineRemovals ⊇ {l ∈ EA with l 6∈ EB} = EA − EB (3.2)

Note that the git diff does not return these two separate sets but rather a
single set of lines, each marked as either an addition or removal. We interpret
these as follows.

lineAdditions = {l.content : l ∈ GitDiffLines ∧ l.origin = LineAddition}
(3.3)

lineRemovals = {l.content : l ∈ GitDiffLines ∧ l.origin = LineRemoval}
(3.4)

Furthermore we make the assumption that if a line that is in both encodings
is included as an addition, it must also be included as a removal (and vice
versa). That is, we assume that

line ∈ EA ∩ EB : line ∈ lineAdditions⇐⇒ line ∈ lineRemovals (3.5)

3.3 Correctness of the AST Diff algorithm

We show that our AST Diff algorithm indeed produces the output specified
in section 3.1.

This section references the algorithms AstDiff (3.1), computeChanges
(3.2), createChange (3.3) and computeStructChanges (3.4). Names written
in typewriter font are referring to the respective entities in these algo-
rithms. We refer to a specific line with L#. We add the line number as
subscript when referring to an entity at a specific program state. For ex-
ample, nodeA4 refers to the variable nodeA in the state before execution of
L4.

16



1: function astDiff(GitDiffLines)
2: nodesA ← ∅
3: nodesB ← ∅
4: for all lines in GitDiffLines do
5: node ← Node(line.content)
6: if line.origin = LineAddition then
7: nodesB.add(node)
8: else if line.origin = LineDeletion then
9: nodesA.add(node)

10: end
11: end

. Intermediate state 1
12: changes ← computeChanges(nodesA, nodesB)
13: structChanges ← computeStructChanges(changes)

. Intermediate state 3
14: xChanges ← ∅
15: for all changes do
16: xChange ← change ⊕ structChanges.contains(change.id)
17: xChanges.add(xChange)
18: end
19: for all ids in structChanges do
20: if changes.find(id) = NULL then
21: xChange.id ← id
22: xChange.nodeA ← treeA.find(id)
23: xChange.nodeB ← treeB.find(id)
24: xChange.kind ← Stationary
25: xChange.flags ← False
26: xChange.structFlag ← True
27: xChanges.add(xChange)
28: end
29: end
30: return xChanges
31: end

Algorithm 3.1: The AST Diff algorithm

17



3.3.1 Intermediate state 1

In AstDiff we first create node objects according to the lines in the line
diff. Since git diff returns a single set of lines instead of the two sets
lineAdditions and lineRemovals, we have to decide from the line origin to
which set a line belongs.

From examining the AstDiff algorithm (3.1) it is clear that at intermediate
state 1, the following holds:

∀l ∈ GitDiffLines :

l.origin = LineAddition↔ Node(l.content) ∈ nodesB

l.origin = LineRemoval↔ Node(l.content) ∈ nodesA

Or in terms of the mentioned sets:

l ∈ lineAdditions⇐⇒ Node(l) ∈ nodesB (3.6)

l ∈ lineRemovals⇐⇒ Node(l) ∈ nodesA (3.7)

3.3.2 Intermediate state 2

We show that the following holds at intermediate state 2 in computeChanges:

nodeB ∈ onlyInB⇐⇒
nodeB ∈ nodesB ∧ @nodeA ∈ nodesA : nodeA.id = nodeB.id

(3.8)

Note that nodesA and nodesB are never modified. We do not need to specify
a concrete state when referring to them.

Direction ⇐=

L3 =⇒ onlyInB4 = nodesB =⇒ nodeB ∈ onlyInB4

We show by contradiction that nodeB is never removed from onlyInB. We
assume that at L9, we call

remove(nodeB9, onlyInB) with nodeB9 = nodeB

nodeB9 is assigned on L5. This implies that on L5 of the same loop iteration

find(nodeA.id5, nodesB) returns nodeB

=⇒ nodeA.id5 = nodeB.id @nodeA ∈ nodesA : nodeA.id = nodeB.id

A contradiction. Therefore, our assumption was wrong and nodeB is
never removed from onlyInB.

18



1: function computeChanges(nodesA, nodesB)
2: changes ← ∅
3: onlyInB ← nodesB
4: for all nodesA do
5: nodeB ← nodesB.find(nodeA.id)
6: change ← createChange(nodeA, nodeB)
7: changes.add(change)
8: if nodeB then
9: onlyInB.remove(nodeB)

10: end
11: end

. Intermediate state 2
12: for all onlyInB do
13: change ← createChange(NULL, nodeB)
14: changes.add(change)
15: end
16: for all changes do
17: if isFake(change) then
18: changes.remove(change)
19: end
20: end
21: return changes
22: end

Algorithm 3.2: computeChanges
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Direction =⇒
L3 =⇒ onlyInB4 = nodesB

No nodes are added to onlyInB and none are removed from nodesB, hence

onlyInB ⊆ nodesB

=⇒ nodeB ∈ nodesB

We now show by contradiction that

@nodeA ∈ nodesA : nodeA.id = nodeB.id

We assume
∃nodeA ∈ nodesA : nodeA.id = nodeB.id

The loop at L4 iterates through all nodes in nodesA, including nodeA. We
examine the iteration with

nodeA5 = nodeA

From our assumptions about encodings, we know node IDs are unique within
their encoding. From that, it follows that node IDs are also unique within
the sets lineAdditions and lineRemovals and further also within nodesA and
nodesB. Specifically, nodeB is the only node in nodesB with its ID, so at L5

nodeA.id5 = nodeA.id = nodeB.id

=⇒ find(nodeA.id5, nodesB) returns nodeB

=⇒ nodeB6 = nodeB 6= NULL

Therefore in this iteration the condition at L8 is satisfied and at L9, we call

remove(nodeB9, onlyInB) with nodeB9 = nodeB

=⇒ nodeB 6∈ onlyInB

No node is added to onlyInB after L3 so at intermediate state 2, we get the
contradiction

nodeB 6∈ onlyInB nodeB ∈ onlyInB

Therefore, our assumption was wrong and

@nodeA ∈ nodesA : nodeA.id = nodeB.id

holds true. �

20



3.3.3 Intermediate state 3

We show that at intermediate state 3

changes = Changes(TA, TB)

structChanges = StructChanges(TA, TB)

Direction changes ⊇ Changes(TA, TB)
We first show changes ⊇ Changes(TA, TB). Let change ∈ Changes(TA, TB)

be an arbitrary change object and let id = change.id.

change ∈ Changes(TA, TB) =⇒ isFake(change) = False

We make case distinction on the kind of change and show for each case that
change ∈ changes.

1: function createChange(nodeA, nodeB)
2: if nodeA then
3: change.id ← nodeA.id
4: if nodeB then
5: if nodeA.parentId = nodeB.parentId then
6: change.kind ← Stationary
7: else
8: change.kind ← Move
9: end

10: else
11: change.kind ← Deletion
12: end
13: else
14: change.id ← nodeB.id
15: change.kind ← Insertion
16: end
17: change.flags ← computeFlags(nodeA, nodeB)
18: change.nodeA ← nodeA
19: change.nodeB ← nodeB
20: return change
21: end

Comment: computeFlags sets label, type and value flags as specified in
section 2.4.

Algorithm 3.3: createChange

21



Case Insertion:
From change.kind = Insertion it follows, that all flags are False.

change.kind = Insertion =⇒ id 6∈ TA ∧ id ∈ TB

id 6∈ TA =⇒ @n ∈ TA : n.id = id =⇒ @lA ∈ EA : lA.id = id

id ∈ TB =⇒ ∃n ∈ TB : n.id = id =⇒ ∃lB ∈ EB : lB.id = id

Let lB ∈ EB : lB.id = id and nB := Node(lB).

@lA ∈ EA : lA.id = id =⇒ lB 6∈ EA

(3.1) =⇒ lB ∈ lineAdditions

(3.6) =⇒ nB ∈ nodesB

(3.2) =⇒ @lA ∈ lineRemovals : lA.id = id

(3.7) =⇒ @nA ∈ nodesA : nA.id = id

(3.8) =⇒ nB ∈ onlyInB

When iterating over onlyInB at L12, we encounter nB. In this loop iteration

change14 = createChange(NULL, nB)

L14 =⇒ change14 ∈ changes16

When we call createChange (3.3), we have

nodeA = NULL, nodeB = nB

We enter the branch at L13.

L14 =⇒ change.id = nB.id = id

L15 =⇒ change.kind = Insertion

At L17, because nodeA = NULL, all flags are set to false.

=⇒ createChange(NULL, nB) = change =⇒ change14 = change

=⇒ change ∈ changes16

Case Deletion:
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From change.kind = Deletion it follows, that all flags are False. By a
similar argument as for the insertion we get

nA ∈ nodesA

@nB ∈ nodesB : nB.id = id

where nA := Node(lA) and lA ∈ EA : lA.id = id. When iterating over
nodesA at L4, we encounter nA.

@nB ∈ nodesB : nB.id = id

=⇒ find(nA.id, nodesB) returns NULL

=⇒ nodeB6 = NULL

=⇒ change7 = createChange(nA,NULL)

L7 =⇒ change7 ∈ changes12

When we call createChange (3.3), we have

nodeA = nA, nodeB = NULL

We enter the branch at L2.

L3 =⇒ change.id = nA.id = id

We then enter the branch at L10.

L11 =⇒ change.kind = Deletion

At L17, all flags are set to false because nodeB = NULL.

=⇒ createChange(nA,NULL) = change =⇒ change7 = change

=⇒ change ∈ changes12

No changes are removed from changes in lines L12 - L16 and we get

change ∈ changes16

Case Move and Stationary:
We present the argument for the case where change.kind = Stationary.

The argument for Move is very similar and is thus omitted.

change.kind = Stationary =⇒ id ∈ TA ∧ id ∈ TB
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id ∈ TA =⇒ ∃n ∈ TA : n.id = id =⇒ ∃lA ∈ EA : lA.id = id

id ∈ TB =⇒ ∃n ∈ TB : n.id = id =⇒ ∃lB ∈ EB : lB.id = id

Let lA ∈ EA : lA.id = id and nA := Node(lA).
Let lB ∈ EB : lB.id = id and nB := Node(lB).

isFake(change) = False =⇒ some flag is set

We assume change.labelF lag = True. The argument for the other flags is
similar. For Move, instead of having a flag set, the parent IDs are different
which results in the same result lA 6= lB.

=⇒ nA.label 6= nB.label =⇒ lA 6= lB

Since we assume IDs to be unique, we get

lA 6∈ EB ∧ lB 6∈ EA

=⇒ lA ∈ lineRemovals ∧ lB ∈ lineAdditions

(3.6) =⇒ nB ∈ nodesB

(3.7) =⇒ nA ∈ nodesA

When iterating over nodesA at L4, we encounter nA.

nA.id = nB.id =⇒ find(nA.id, nodesB) returns nB

=⇒ nodeB6 = nB

L6 =⇒ change7 = createChange(nA, nB)

L7 =⇒ change7 ∈ changes12

When we call createChange (3.3), we have

nodeA = nA, nodeB = nB

We enter the branch at L2

L3 =⇒ change.id = nA.id = id

We then enter the branches at L4 and L5

L8 =⇒ change.kind = Stationary

At L17 we set the flags as specified in section 2.4 to match those of change.

=⇒ createChange(nA, nB) = change =⇒ change7 = change
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=⇒ change ∈ changes12

No changes are removed from changes in lines L12 - L16 and we get

change ∈ changes16

All cases result in change ∈ changes16. From isFake(change) = False we
know that L20 is never executed with change20 = change, therefore

change ∈ changes21

=⇒ changes ⊇ Changes(TA, TB)

Direction changes ⊆ Changes(TA, TB)
Let change ∈ changes. We show that change ∈ Changes(TA, TB).
In computeChanges we have change ∈ changes21

=⇒ change ∈ changes16 ∧ L18 is never executed with change18 = change

=⇒ L17 is executed with change17 = change

=⇒ isFake(change) = False

=⇒ change.kind 6= Stationary ∨ change.labelF lag

∨change.typeF lag ∨ change.valueF lag

It follows that at least one of the following cases must occur.

Case 1: change.kind = Insertion
In createChange, when creating change, let nodeB = nodeB.

change.kind = Insertion =⇒ L15 is executed.

=⇒ change.id = nodeB.id

=⇒ nodeA = NULL =⇒ change = createChange(NULL, nodeB)

=⇒ In computeChanges, change was created at L13

=⇒ nodeB ∈ onlyInB =⇒ nodeB ∈ nodesB

∧@nodeA ∈ nodesA : nodeA.id = nodeB.id

Let lineB be such that Node(lineB.content) = nodeB.

nodeB ∈ nodesB =⇒ lineB ∈ lineAdditions

=⇒ lineB ∈ EB =⇒ nodeB ∈ TB
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The nonexistence of a corresponding node in nodesA lets us infer the nonex-
istence of a corresponding node line in the difference of the encodings.

@nodeA ∈ nodesA : nodeA.id = nodeB.id

=⇒ @lineA ∈ lineRemovals : Node(lineA.content).id = nodeB.id

=⇒ @lineA ∈ lineRemovals : lineA.id = nodeB.id

=⇒ @lineA ∈ EA − EB : lineA.id = nodeB.id

We investigate the two possible cases.
Case 1.1: ∃lineA ∈ EA ∩ EB : lineA.id = nodeB.id

=⇒ lineA.id = nodeB.id = lineB.id ∧ lineA, lineB ∈ EB

IDs are unique in EB =⇒ lineA = lineB

lineB ∈ EA ∩ EB ∧ lineB ∈ lineAdditions

(3.5) =⇒ lineB ∈ lineRemovals @lineA ∈ lineRemovals : lineA.id = nodeB.id

A contradiction to the assumption, therefore this case does not occur.
Case 1.2: @lineA ∈ EA : lineA.id = nodeB.id

=⇒ @nodeA ∈ TA : nodeA.id = nodeB.id =⇒ nodeB.id /∈ TA

nodeB.id /∈ TA ∧ nodeB.id ∈ TB ∧ change.id = nodeB.id

=⇒ ChangeMapTA,TB
(change.id).kind = Insertion

=⇒ isFake(ChangeMapTA,TB
(change.id)) = False

=⇒ ChangeMapTA,TB
(change.id) ∈ Changes(TA, TB)

Case 2: change.kind = Deletion
In createChange, when creating change, let nodeA = nodeA.

change.kind = Deletion =⇒ L11 is executed. =⇒ change.id = nodeA.id

=⇒ nodeB = NULL =⇒ change = createChange(nodeA,NULL)

=⇒ In computeChanges, change was created at L6

=⇒ nodeA ∈ nodesA

nodeB6 = NULL =⇒ @nodeB ∈ nodesB : nodeB.id = nodeA.id

An argument symmetrical to the above gives

ChangeMapTA,TB
(change.id).kind = Deletion
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ChangeMapTA,TB
(change.id) ∈ Changes(TA, TB)

Case 3: change.kind = Move
In createChange, when creating change, let nodeA = nodeA, nodeB =

nodeB.

change.kind = Move =⇒ L8 is executed.

=⇒ nodeA.parentId 6= nodeB.parentId ∧ change.id = nodeA.id

nodeA 6= NULL 6= nodeB

=⇒ In computeChanges, change was created at L6 =⇒ nodeA ∈ nodesA

nodeB6 = nodeB =⇒ at L5 nodesB.find(nodeA.id) returns nodeB

=⇒ nodeB ∈ nodesB ∧ nodeB.id = nodeA.id

Let lineA, lineB be such that nodeA = Node(lineA) and nodeB = Node(lineB).

(3.6), (3.7) =⇒ lineA ∈ lineRemovals ∧ lineB ∈ lineAdditions

(3.1) =⇒ lineA ∈ EA =⇒ nodeA ∈ TA =⇒ nodeA.id ∈ TA

(3.2) =⇒ lineB ∈ EB =⇒ nodeB ∈ TB =⇒ nodeB.id ∈ TB

nodeA.id = nodeB.id = change.id

change.id ∈ TA ∧ change.id ∈ TB ∧ nodeA.parentId 6= nodeB.parentId

=⇒ ChangeMapTA,TB
(change.id).kind = Move

=⇒ isFake(ChangeMapTA,TB
(change.id)) = False

=⇒ ChangeMapTA,TB
(change.id) ∈ Changes(TA, TB)

Case 4: Some flag is set.
We present the argument for the case where change.labelF lag = True.

The argument for the other flags is similar. In createChange, when cre-
ating change, let nodeA = nodeA and nodeB = nodeB.

change.labelF lag = True

=⇒ nodeA 6= NULL 6= nodeB ∧ nodeA.label 6= nodeB.label

=⇒ In computeChanges, change was created at L6

From here on, the argument is similar to the Move case. We get

ChangeMapTA,TB
(change.id).labelF lag = True
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=⇒ isFake(ChangeMapTA,TB
(change.id)) = False

=⇒ ChangeMapTA,TB
(change.id) ∈ Changes(TA, TB)

To recognize the equality change = ChangeMapTA,TB
(change.id), we re-

mind ourselves of the uniqueness of IDs in Changes(TA, TB). That is when
considering two changes change1, change2 ∈ Changes(TA, TB) with equal IDs
change1.id = change2.id, then change1 = change2. One may then consider
the components of change one at a time to see that kind and all set flags
are equal. Equality of unset flags follows by the arguments for the Move and
Stationary case in the proof of changes ⊇ Changes(TA, TB). With this we
have shown

change ∈ Changes(TA, TB)

=⇒ changes ⊆ Changes(TA, TB)

=⇒ changes = Changes(TA, TB)

�

Direction structChanges ⊇ StructChanges(TA, TB)
Let id ∈ StructChanges(TA, TB). We show that id ∈ structChanges. By

definition, there must be a change ∈ Changes(TA, TB) such that at least one
of the following is true.

• change.kind ∈ {Insertion, Move} ∧ nB.parentId = id

• change.kind ∈ {Deletion, Move} ∧ nA.parentId = id

• change.labelF lag ∧ nA.parentId = id

where nX ∈ TX : nX .id = change.id. We present the argument for the first
case and omit the other cases. Their arguments are very similar.

By the previous result, we know

change ∈ changes

In computeStructChanges, when we iterate over changes we encounter
change and in the relevant iteration where change = change:

change.kind ∈ {Insertion, Move} =⇒ the condition at L4 is satisfied

L5 =⇒ change.nodeB.parentId ∈ structChanges

We know change.nodeB 6= NULL because of the change kind. By defini-
tion: change.nodeB = node ∈ TB : node.id = change.id. Because of the
uniqueness of IDs, we get

change.nodeB = nB
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1: function computeStructChanges(changes)
2: structChanges ← ∅
3: for all changes do
4: if change.kind ∈ {Insertion, Move} then
5: structChanges.add(change.nodeB.parentId)
6: end
7: if change.kind ∈ {Deletion, Move} then
8: structChanges.add(change.nodeA.parentId)
9: end

10: if change.labelFlag then
11: structChanges.add(change.nodeA.parentId)
12: end
13: end
14: return structChanges
15: end

Comment: On L5, L8 and L11, we know from the kind of the change that
the respective node pointer is not NULL and that we can access parentId.

Algorithm 3.4: computeStructChanges

=⇒ nB.parentId ∈ structChanges

=⇒ id ∈ structChanges

=⇒ structChanges ⊇ StructChanges(TA, TB)

Direction structChanges ⊆ StructChanges(TA, TB)
Let id ∈ structChanges. We show that id ∈ StructChanges(TA, TB). id

must have been added at one of the lines L5, L8 or L11. We present the
argument for the case L5 and omit the other cases. Their arguments are very
similar.

L5 =⇒ change.nodeB.parentId = id

Let change = change.

L3 =⇒ change ∈ changes =⇒ change ∈ Changes(TA, TB)

L4 =⇒ change.kind ∈ {Insertion, Move}

By definition: change.nodeB = nB ∈ TB : nB.id = change.id

=⇒ nB.parentId = id

change.kind ∈ {Insertion, Move} ∧ nB.parentId = id
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=⇒ id ∈ StructChanges(TA, TB)

=⇒ structChanges ⊆ StructChanges(TA, TB)

=⇒ structChanges = StructChanges(TA, TB)

�

3.3.4 Final output

We show that the AST diff algorithm returns the set XChanges(TA, TB)
that is, we show that in astDiff, xChanges30 = XChanges(TA, TB). The
argument builds on the results from section 3.3.3.

Direction xChanges ⊇ XChanges(TA, TB)
Let xChange ∈ XChanges(TA, TB). We show that xChange ∈ xChanges.

Consider these two cases.

Case 1: ∃change ∈ Changes(TA, TB) : change.id = xChange.id
xChange must have been included in XChanges by the first method (2.2),
giving us

xChange = change⊕ xChange.structF lag

structChanges = StructChanges(TA, TB) =⇒

∀id : structChanges.contains(id) ≡ id ∈ StructChanges(TA, TB)

When iterating over changes at L15, we encounter change.

structChanges.contains(change.id) = xChange.structF lag

=⇒ xChange = change⊕ xChange.structF lag = xChange

L17 =⇒ xChange ∈ xChanges

Case 2: @change ∈ Changes(TA, TB) : change.id = xChange.id
xChange must have been included in XChanges by the second method (2.3),
giving us

xChange.id ∈ StructChanges(TA, TB)

xChange.kind = Stationary, xChange.structF lag = True

xChange.labelF lag = xChange.typeF lag = xChange.valueF lag = False

When iterating over structChanges at L19, we encounter xChange.id.

@change ∈ Changes(TA, TB) : change.id = xChange.id
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=⇒ changes.find(xChange.id) = NULL

L21 =⇒ xChange.id = xChange.id

L22 =⇒ xChange.nodeA ∈ TA ∧ xChange.nodeA.id = xChange.id

L22 =⇒ xChange.nodeB ∈ TB ∧ xChange.nodeB.id = xChange.id

L24 =⇒ xChange.kind = Stationary = xChange.kind

L25 =⇒ xChange.labelFlag = xChange.typeFlag =

xChange.valueFlag = False

L26 =⇒ xChange.structFlag = True = xChange.structF lag

=⇒ xChange = xChange

L27 =⇒ xChange ∈ xChanges

Both cases result in xChange ∈ xChanges, therefore

xChanges ⊇ XChanges(TA, TB)

Direction xChanges ⊆ XChanges(TA, TB)
Let xChange ∈ xChanges. We show that xChange ∈ XChanges(TA, TB).

The following two cases can occur.

Case 1: ∃change ∈ changes : change.id = xChange.id

=⇒ change ∈ Changes(TA, TB)

Assume xChange is created at L21.

L20 =⇒ changes.find(xChange.id) = NULL

=⇒ @change ∈ changes : change.id = xChange.id 
which is in contradiction to our case assumption therefore xChange is created
at L16.

L16 =⇒ xChange = change⊕ structChanges.contains(change.id)

=⇒ xChange.id = change.id = change.id =⇒ change = change

=⇒ xChange = change⊕ change.id ∈ StructChanges(TA, TB)

(2.2) =⇒ xChange ∈ XChanges(TA, TB)
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Case 2: @change ∈ changes : change.id = xChange.id

=⇒ @change ∈ Changes(TA, TB) : change.id = xChange.id

Assume xChange is created at L16.

L16 =⇒ xChange = change⊕ structChange.contains(change.id)

=⇒ xChange.id = change.id

=⇒ ∃change ∈ changes : change.id = xChange.id
which is in contradiction to our case assumption therefore xChange is created
at L21.

L21 =⇒ xChange.id = id

L22 =⇒ xChange.nodeA ∈ TA ∧ xChange.nodeA.id = id

L22 =⇒ xChange.nodeB ∈ TB ∧ xChange.nodeB.id = id

L24 =⇒ xChange.kind = Stationary

L25 =⇒ xChange.labelF lag = xChange.typeF lag =

xChange.valueF lag = False

L26 =⇒ xChange.structF lag = True

L19 =⇒ id ∈ structChanges

=⇒ xChange.id ∈ StructChanges(TA, TB)

(2.3) =⇒ xChange ∈ XChanges(TA, TB)

Both cases result in xChange ∈ XChanges(TA, TB), therefore

xChanges ⊆ XChanges(TA, TB)

=⇒ xChanges = XChanges(TA, TB)

�
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Chapter 4

The AST Merge Algorithm

In this chapter we present the AST Merge algorithm which we have devel-
oped. It takes a modular approach in that the user can supply plug-in-like
components to customize its behavior. We describe the algorithm as well
as abstractions, data structures, submodules and interfaces used. We also
present two examples of the mentioned components that when employed,
result in a nontrivial algorithm for merging ASTs.

The AST Merge algorithm takes the following inputs:

• Two ASTs TA and TB from two different branches A and B.

• Their closest ancestor Tbase.

• A pipeline initializer.

• A list of conflict pipeline components.

And it returns the following outputs:

• An AST Tmerged that is the merged version of TA and TB.

• A set of conflict pairs conflictPairs that could not be resolved.

As figure 4.1 illustrates, we first use the introduced AST Diff algorithm to
compute the sets of changes each of the branches makes relative to Tbase.
From each of these sets we build a change dependency graph, a concept that
will be introduced shortly. Next we execute a single pipeline initializer and
then a pipeline of independent components that transform these trees and
graphs and detect and resolve conflicts between changes. Then we order
all non-conflicting changes topologically according to their dependencies and
apply them to Tbase, creating the tree Tmerged. The last step is to remove
any gaps in lists which may have been introduced and then return Tmerged
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Figure 4.1: Illustration of the AST Merge algorithm.

which, together with the set of unresolved conflicts, forms the output of the
algorithm.

4.1 Change Dependency Graphs (CDGs)

A node can only be inserted or moved if its new parent exists in the tree.
Furthermore, a node can only be deleted if it has no children. For this reason,
the application of some changes depends on the earlier application of other
changes. For each branch, we express these dependencies as a directed graph
with changes as vertices. This graph contains an edge (change1, change2)
if applying change1 requires change2 to be applied before. Note that these
dependencies only make sure that the parent of any node exists in the tree.
They do not ensure label-uniqueness under parents or prohibit cyclic rela-
tionships of nodes. Also note that the graph is not necessarily connected.

We initialize these graphs as follows. Let changes be the set of changes
some branch makes. CDG = (changes, E) where (change1, change2) ∈ E if

• change1.nodeB.parentId = change2.nodeB.id∧
change1.kind ∈ {Insert, Move} ∧ change2.kind = Insert

• change1.nodeA.id = change2.nodeA.parentId∧
change1.kind = Delete ∧ change2.kind ∈ {Delete, Move}
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1: function astMerge(treeBase, treeA, treeB, pipelineInitializer, conflict-
Pipeline)

2: diffA ← astDiff(treeBase, treeA)
3: diffB ← astDiff(treeBase, treeB)
4: cdgA ← buildCdg(diffA)
5: cdgB ← buildCdg(diffB)
6: conflictingChanges ← ∅
7: conflictPairs ← ∅
8: transition ← pipelineInitializer.run(treeBase, treeA, treeB, cdgA,

cdgB, conflictingChanges, conflictPairs)
9: check(transition)

10: for all components in conflictPipeline do
11: transition← component.run(treeBase, treeA, treeB, cdgA, cdgB,

conflictingChanges, conflictPairs)
12: check(transition)
13: end
14: applicableChanges ← cdgA ∪ cdgB − conflictingChanges
15: sort(applicableChanges, cdgA, cdgB)
16: treeMerge ← treeBase
17: for all applicableChanges do
18: applyChange(treeMerge, change)
19: end
20: for all changed lists do
21: compactList(list)
22: end
23: return [treeMerge, conflictingChanges]
24: end

Comment: In check(transition) we check the transition returned
by the last component with all appropriate component checkers.
sort(applicableChanges, cdgA, cdgB) sorts the changes topologically ac-
cording to their dependencies given by the CDGs. compactList(list) re-
moves gaps in modified lists so they are continuous.

Algorithm 4.1: The AST Merge algorithm
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4.1.1 CDGs are acyclic

We show that CDGs contain no circular dependencies by assuming the exis-
tence of a cycle and showing that this leads to a contradiction. From the def-
inition we can observe that on any path, once a change with change.kind ∈
{Insert, Move} has been reached, the only outgoing edges are to changes
of kind Insert hence all following changes in the path are of kind Insert.
Therefore any cycle must consist of either only Insert changes or only Delete
changes. Consider the case where the cycle contains Insert changes only. Let
(change1, change2) be any edge in the cycle, let l be the length of the cycle
and let h(node) be the depth of node in the tree.

change1.kind = change2.kind = Insert =⇒
change1.nodeB.parentId = change2.nodeB.id =⇒

change1.nodeB.parent = change2.nodeB =⇒
h(change1.nodeB)− 1 = h(change2.nodeB)

Applying the same argument for the next edge in the cycle (change2, change3)
gives us

h(change2.nodeB)− 1 = h(change3.nodeB) =⇒
h(change1.nodeB)− 2 = h(change2.nodeB)− 1 = h(change3.nodeB)

Extending this to the whole cycle, we get

h(change1.nodeB)−l = h(change2.nodeB)−(l−1) = · · · = h(change1.nodeB)

which is a contradiction therefore no such cycle exists. The argument works
symmetrically for the case where the graph consists of Delete changes. �

4.2 Conflict detection and resolution pipeline

Our merge algorithm supports detection and resolution of conflicts by plug-
in-like components. These components share a unified interface and work in
a pipeline to improve the merged version of the tree by detecting conflict-
ing changes and resolving these conflicts. We call such components pipeline
components. Before the first component of the pipeline can be executed, the
invariants of said interface must be established. For this reason we define
a second class of components called pipeline initializers. One such pipeline
initializer must be supplied to the AST Merge algorithm. It is then executed
before the first pipeline component to establish the invariants of the pipeline.
The following sections will introduce one pipeline initializer and one pipeline
component that, when used to configure the generic algorithm, implement a
valid and nontrivial merge algorithm.
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4.2.1 Interface of pipeline initializers

Pipeline initializers provide a method run that takes the following objects
as input.

• ASTs Tbase, TA, TB. These are immutable.

• CDGs cdgA, cdgB.

• A set conflictingChanges ⊆ cdgA.changes ∪ cdgB.changes.

• A set conflictPairs ⊆ cdgA.changes× cdgB.changes.

Additionally, pipeline initializers may rely on the following preconditions.

1. Tbase, TA and TB are of valid form.

2. Applying all and only changes from cdgA to Tbase results in TA.

3. Applying all and only changes from cdgB to Tbase results in TB.

4. Both sets conflictingChanges and conflictPairs are empty.

5. cdgA and cdgB are acyclic

Pipeline initializers must establish the pipeline invariants which are described
below.

4.2.2 Interface of pipeline components

Like pipeline initializers, pipeline components also provide a method run
taking the same inputs, now with TA and TB being mutable as well. Let
nonconflicting = cdgA.changes ∪ cdgB.changes− conflictingChanges and
let Tmerged be the tree that results from applying all changes in nonconflicting
to Tbase. Following are the pipeline invariants. Each pipeline component may
rely on them when it is executed. Each component must have reestablished
them when it returns.

The pipeline invariants

1. If sorted topologically by dependencies, all changes in nonconflicting
can be applied.

2. Tmerged is of valid form.

3. Node IDs are unique in TA and TB.
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Figure 4.2: Semantic conflict in a loop statement. (adapted from Otth [6])

4. All conflicting changes are either part of a conflict pair or depend on a
conflicting change.

5. cdgA and cdgB are acyclic.

Mutability and valid from of TA and TB

An interesting thing to note is why TA and TB are mutable. By allowing each
component to make changes to these trees in addition to modifying change
objects, it is much simpler for later components in the pipeline to build on
the work of earlier components as the trees represent the result of applying all
changes in the respective CDG to Tbase. Since such earlier work only makes
sense when considered in the context of a merge, it is not required that the
trees TA and TB by themselves are of valid form but only that they maintain
the ID uniqueness of nodes. It is worth mentioning that these modified trees
do not represent any concrete version of the program code and are never
encoded and written to disk.

4.2.3 The Conflict Unit pipeline initializer

We present a pipeline initializer that detects conflicts based on conflict units,
a concept originally introduced by Otth [6]. The following motivational ex-
ample is taken from Otth’s master thesis. Consider a loop statement node
and its child nodes describing the loop body, loop variable initialization, in-
crement and loop condition as illustrated in figure 4.2. Now consider the
case where branch A changes the initialization node and branch B changes
the condition node. While both of these changes could be applied together
without creating an ill formed AST it is very likely that this will result in
incorrect semantics.
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We see that in this situation the changes of both branches are not in
a syntactic conflict but very likely in a semantic conflict. Our goal is not
only to detect syntactic but also some semantic conflicts. We do this by
defining neighborhoods of nodes which are closely related to each other and
only allowing one branch to make changes to any such neighborhood. Getting
back to the example with the loop, it would make sense that the initialization,
update and condition nodes and the loop statement node itself make up such
a neighborhood. Now both branches make changes to that neighborhood and
a conflict is detected.

Conflict units are an implementation of this idea of neighborhoods of
related nodes where the neighborhoods are connected sections of the AST.
To define these sections, we consider a subset of node types as special and
split the tree at nodes of such types. See figure 4.3 for an illustrated example.
The choice of this subset is artificial and based on a manual assessment of
the programming language. In our example, both LoopStatement and body
would be one of these special types but in some cases it might be reasonable
to regard the loop body as belonging to the same conflict unit as the other
nodes. Typically though, this set will include types for classes, methods and
statement lists, among others. We will now describe the concept of conflict
units in a more formal way.

Definition of conflict units and conflict roots

The Conflict Unit pipeline initializer is configured with a set of node types
ConflictTypes. We call all nodes with node.type ∈ ConflictTypes conflict
roots. We require and assume that the roots of TA, TB and Tbase are such
conflict roots. ConflictRoot(node) is the closest ancestor of node that is a
conflict root. If node is itself a conflict root, it is mapped to itself.

ConflictUnit(node) = {node′ : ConflictRoot(node′) = ConflictRoot(node)}

A set of nodes that have the same conflict root is a conflict unit. We identify
a conflict unit by the ID of its root node.

A conflict unit is affected by a branch if the branch makes changes to
nodes in that conflict unit1. A conflict unit is in conflict if it is affected by
both branches. In such a case, all changes of branch A affecting this conflict
unit are considered conflicting with all changes of branch B affecting this
conflict unit.

1Note that it is possible a change to affect two conflict units at once.
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Figure 4.3: Visualization of conflict units. Conflict roots are in gray and the
conflict units in red. Nodes A and B belong to conflict unit A. Nodes C, D,
E and F belong to conflict unit C. Node G belongs to conflict unit G and is
its sole member.

Child-structure-change conflicts

The main purpose of the structF lag flag of change objects is to detect con-
current changes that, if they were applied, would cause the AST to become ill
formed. Hence, if we encounter two changes (of different branches) affecting
the same node and both having the structF lag set, we mark any changes to
the children of this node that would cause the structF lag flag to be set as
conflicting. To specify this formally, we define the set of changes of a branch
that affect the child structure of a node with a certain ID:

StructureChangescdg(id) := {change ∈ cdg :

(change.nodeA.parentId = id ∨ change.nodeB.parentId = id)∧

(change.kind 6= Stationary ∨ change.labelF lag = True)}

Then for any two changes changeA ∈ cdgA, changeB ∈ cdgB with id :=
changeA.id = changeB.id ∧ changeA.structF lag ∧ changeB.structF lag we
add the following set to conflictPairs:

StructureChangescdgA(id)× StructureChangescdgB(id)

Label-based dependencies between changes

The dependencies represented by the CDGs are of a very basic nature. They
simply ensure that the final tree, every node has a valid parent. The CDGs
do not express dependencies that are created by the invariant of valid form
and its requirement of label uniqueness under a single parent (see section
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Figure 4.4: A conflicting deletion causing a label collision.

2.2.1). In order to establish the pipeline invariant, the conflict unit pipeline
initializer must take these more subtle dependencies into account.

In the example shown in figure 4.4 one branch deletes node B and inserts
a new node C at the same position while the other branch changes the value
of B. The deletion and the value change are in conflict. Now that the deletion
is not applied, the insertion must also not be applied or nodes B and C will
have the same label under the same parent.

We define label dependencies as follows. Consider a change with

change.kind ∈ Deletion,Move ∨ change.labelF lag = True

Another change change′ from the same CDG depends on change if the fol-
lowing holds

change.nodeA.parentId = change′.nodeB.parentId

∧change.nodeA.label = change′.nodeB.label

Note that unlike the CDGs, these label-based dependencies can contain cy-
cles. Also note that for each change there is never more than one such de-
pending change. Consider the case where both change1 and change2 depend
on change. This would imply

change1.nodeB.parentId = change2.nodeB.parentId

∧change1.nodeB.label = change2.nodeB.label

which is in violation of the second requirement of valid form (see section
2.2.1). It follows that this branch’s version of the tree is not of valid form
which is in contradiction with precondition 1 of pipeline initializers (see sec-
tion 4.2.1).
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Figure 4.5: The combination of the moves would create a cycle.

Avoiding the creation of cycles in ASTs

Even though all input trees are valid, it is possible that in combination, the
changes of both branches creates cycles in the merged AST. Take the example
shown in figure 4.5. One branch moves the root of subtree B into the subtree
A and the other branch moves the root of subtree A into the subtree B. If
both of these changes were applied then a cycle would be created.

To detect such cases, we do additional checks for Move changes. We
define a boolean function on node IDs that detects if one node is an ancestor
of another:

isAncestor(T, id, ancestorId) ≡
∃node, ancestor ∈ T : node.id = id ∧ ancestor.id = ancestorId

∧∃i ≥ 0 : node .parent.parent · · · .parent︸ ︷︷ ︸
i

= ancestor

Then for every Move change of branch A, we check whether branch B moves
an ancestor of the moved node into that node’s subtree. That is, for any
changeA ∈ cdgA : changeA.kind = Move, we check the following condition.

∀ancestor ∈ TA : isAncestor(TA, changeA.id, ancestor.id)→

∀changeB ∈ cdgB : (changeB.id = ancestor.id ∧ changeB.kind = Move)→
¬isAncestor(TB, ancestor.id, changeA.id)

If this condition is not satisfied then applying both changeA and the of-
fending changeB will result in a cycle in the merged tree. To avoid this we
add (changeA, changeB) to conflictPairs. The same is done symmetrically
for branch B. For an implementation that checks this condition, refer to
algorithm 4.2.
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1: function checkMove(changeA, cdgB)
2: conflictingMoves ← ∅
3: ancestor ← changeA.nodeB.parent
4: while ancestor 6= ROOT do
5: changeB ← cdgB.find(ancestor.id)
6: if changeB 6= NULL ∧ changeB.kind = Move then
7: if isAncestor(changeB.nodeB, changeA.id) then
8: conflictingMoves.add(changeB)
9: end

10: end
11: ancestor ← ancestor.parent
12: end
13: conflictPairs.addAll(changeA × conflictingMoves)
14: conflictingChanges.add(changeA)
15: conflictingChanges.addAll(conflictingMoves)
16: end

Comment: When calling isAncestor(node, ancId), node specifies both
the tree and the starting node: The check is evaluated for the tree that node
is part of.

Algorithm 4.2: Detecting conflicting move operations.

By this method, we detect cycles that could be introduced by combination
of changes of both branches. However, cycles can also be introduced by not
applying certain moves because of conflicts. Consider the case shown in figure
4.6 where a branch moves subtree B out of subtree A and then moves subtree
A into subtree B. By itself, these are valid changes but the move of the root
of B is marked as conflicting with the value change of the other branch. If
we were now to only apply the move of A then a cycle would be created. In
some sense, the move of A depends on the move of B.

We introduce the notion of move dependencies. We define an auxil-
iary function moveBound(TA, TB, id) to be the ID of the node whose sub-
tree bounds in both trees the move of the node specified by id. Let PA =
[pA1 . . . pAn ] and PB = [pB1 . . . pBm] be the paths resulting in walking up from the
node specified by id in the respective trees TA and TB such that pA1 = pB1 = id
and pAn = pBm = ROOT. moveBound(TA, TB, id) is then the first ID of the
longest common suffix of PA and PB.

For a branch X we say change ch1 ∈ cdgX depends on change ch2 ∈ cdgX
if ch1 moves a node to a parent that is in the subtree of node in the base
version and ch2 moves a node that, in the branch version, lies on the path
from node to moveBound(Tbase, TX , node.id). More formally, ch1 depends on
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Figure 4.6: Conflicts can result in a cycle.

ch2 if the following holds:

ch1.kind = ch2.kind = Move∧

isAncestor(Tbase, ch1.nodeB.parentId, ch1.nodeB.id)∧

isAncestor(TX , ch1.id, ch2.id) ∧ isAncestor(TX , ch2.id, bound)

where bound = moveBound(Tbase, TX , ch1.id).

1: function findMoveDependencies(change, cdg)
2: dependencies ← [ ]
3: newParentInBase ← treeBase.find(change.nodeB.parentId)
4: if isAncestor(newParentInBase, change.id) then
5: moveBound ← moveBound(change.nodeA, change.nodeB)
6: node ← change.nodeB.parent
7: while node.id 6= moveBound do
8: change2 ← cdg.find(node.id)
9: if change2 6= NULL ∧ change2.kind = Move then

10: dependencies.append(change2)
11: end
12: node ← node.parent
13: end
14: end
15: return depedencies
16: end

Algorithm 4.3: findMoveDependencies

Note that child-structure-change conflicts, label dependencies and move
dependencies are not related to conflict units. These concepts complement
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1: function moveBound(nodeA, nodeB)
2: pathStackA ← [ ]
3: pathStackB ← [ ]
4: while nodeA 6= ROOT do
5: pathStackA.push(nodeA)
6: nodeA ← nodeA.parent
7: end
8: while nodeB 6= ROOT do
9: pathStackB.push(nodeB)

10: nodeB ← nodeB.parent
11: end
12: moveBound ← ROOT
13: while pathStackA.peek = pathStackB.peek do
14: moveBound ← pathStackA.pop
15: pathStackB.pop
16: end
17: return moveBound
18: end

Algorithm 4.4: moveBound

conflict-unit-based conflict detection and are necessary to establish the pipeline
invariants.

Computing conflicts based on conflict units

To find and mark all such conflicts, we begin by computing the set of affected
conflict units for each branch and then consider the intersection of these two
sets. For every conflict unit CU in this set, let ChangesA,CU and ChangesB,CU

be the sets of changes affecting CU of branches A and B respectively. We
add all pairs ChangesA,CU ×ChangesB,CU to conflictPairs. We also add all
changes ChangesA,CU∪ChangesB,CU and all changes (transitively) depending
on these to conflictingChanges. For additional details, see algorithm 4.5.

To compute the set of affected conflict units for a branch, we simply go
over all its changes, for each computing the affected conflict unit and adding
its conflict root to the result. We find these conflict roots by walking the tree
upwards from the affected node until the first conflict root is encountered.
For more details, refer to algorithms 4.6 and 4.7.
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1: function conflictUnitInitializer(base, treeA, treeB, cdgA, cdgB,
conflictingChanges, conflictingPairs)

2: affectedCUsA ← computeAffectedCUs(cdgA)
3: affectedCUsB ← computeAffectedCUs(cdgB)
4: for all conflictRoots ∈ affectedCUsA.keys ∩ affectedCUsB.keys do
5: changesA ← affectedCUsA.values(conflictRoot)
6: changesB ← affectedCUsB.values(conflictRoot)
7: conflictingPairs.putAll(changesA × changesB)
8: conflictingChanges.putAll(changesA)
9: conflictingChanges.putAll(changesB)

10: end
11: findStructureConflicts(cdgA,cdgB)
12: for all Move changes ∈ cdgA do
13: checkMove(change, cdgB)
14: end
15: for all Move changes ∈ cdgB do
16: checkMove(change, cdgA)
17: end
18: for all changes ∈ conflictingChanges do
19: markDepending(change)
20: end
21: end

Comment: findStructureConflicts detects child-structure-
change conflicts and marks the appropriate changes as conflicting.
markDepending(change) recursively marks all changes that depend on
change as conflicting. It takes into consideration dependencies in the CDGs,
label dependencies and move dependencies.

Algorithm 4.5: run method of the Conflict Unit pipeline initializer
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1: function computeAffectedCUs(cdg)
2: for all changes in cdg do
3: if change.kind 6= Insertion then
4: conflictRootA ← findConflictRoot(change.nodeA)
5: affectedCUs.put(conflictRootA, change)
6: end
7: if change.kind 6= Delete then
8: conflictRootB ← findConflictRoot(change.nodeB)
9: affectedCUs.put(conflictRootB, change)

10: end
11: end
12: return affectedCUs
13: end

Algorithm 4.6: computeAffectedCUs

1: function findConflictRoot(node)
2: conflictRoot ← node
3: while conflictRoot.type 6∈ ConflictTypes do
4: conflictRoot = conflictRoot.parent
5: end
6: return conflictRoot.id
7: end

Algorithm 4.7: findConflictRoot
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Figure 4.7: A diff3 parse and merged version of a list. Stable chunks are
marked gray. The unstable chunk has been merged with our list merge
algorithm by removing element 4 and inserting element 5.

4.2.4 The List Merge pipeline component

In practice, when detecting conflicts using the conflict-unit-based approach,
conflicts often occur on lists (e.g. both branches adding methods to a method
list). Most of the time resolving such conflicts is trivial and tedious for the
user. We try to avoid this by attempting to resolve such conflicts automati-
cally with a pipeline component which we will now present. Note that as this
is a pipeline component, its use is optional and the AST Merge algorithm
will produce a valid tree regardless of whether or not it is used.

One of the most used merging algorithms for ordered lists is diff3 (or
slight variations thereof). Envision gives us the advantage that list elements
are uniquely identified by their node ID which allows us to specialize diff3.
Khanna et al. investigated the behavior of diff3 formally and introduced
some nomenclature we are going to use as well, namely we are also computing
a diff3 parse which considers two branch versions and a base version of a
list to partition it into stable and unstable chunks [4]. Stable chunks are
segments of the list that are identical in all three versions. Unstable chunks
are segments where at least one branch deviates from the others. The diff3
parse of a list is then the series of these chunks, always alternating from
stable to unstable to stable chunks. The goal is to find a merged version of
the unstable chunks.

This component is configured with a set ConflictTypes ⊆ NodeTypes.
In our implementation, this is the same set also passed to the conflict unit
component but in principle, this could be a different set. The configuration
also includes two sets ListTypes ⊆ ConflictTypes and UnorderedTypes ⊆
ConflictTypes such that ListTypes ∩ UnorderedTypes = ∅. ListTypes is the
set of node types that behave like ordered lists. The types of statement lists
and argument lists would typically be such list types. UnorderedTypes is the
set of node types that behave like collections or unordered lists. These could
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for example be types of class lists or method lists. Ultimately, these sets are
determined by the programming language and the choice of the ConflictTypes
set. The labels of the children of such nodes are integers.

The algorithm for ordered lists

We select the lists to which to apply the list merge algorithm by finding
those list container nodes for which both branches change the child structure
indicating that both branches make changes to the list itself. We then check
the following conditions and only apply the algorithm if all hold true.

1. The only way the branches change the list container node is changing
the child structure. The branches do not move it or make internal
changes to it.

2. All list elements are of a type in ConflictTypes.

3. If there is a conflict pair where both changes affect the same list element,
one change must only change the label and in all conflict pairs the other
change is part of, the paired change must affect a sibling (in either
version) of the element. Formally, for every list element elem:

∀(chA, chB) ∈ conflictPairs : chA.id = chB.id = elem.id→

(onlyLabel(chA) ∧ ∀(ch′
A, chB) ∈ conflictPairs :

affectsParent(ch′
A, listContainer)

∨

onlyLabel(chB) ∧ ∀(chA, ch
′
B) ∈ conflictPairs :

affectsParent(ch′
B, listContainer))

where onlyLabel(change) is true if and only if change.kind = Stationary
and all flags but the labelF lag are False, listContainer is the node that
holds the list and

affectsParent(change, container) ≡

change.nodeA.parentId = container.id∨

change.nodeB.parentId = container.id
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For every selected list we compute the diff3 parse from the different list
versions LA, LB and Lbase. Then we iterate over all unstable chunks of all
lists and for each one attempt to build a merged version.

We do so by considering each element that occurs in version A or B of
the chunk and trying to insert it into the merged chunk. Such an insertion
succeeds if the following two conditions are met:

• A unique best position for the element is found.

• The other branch makes no conflicting change.

Such a unique best position is a position where the immediate predecessor and
successor of the inserted element are each also a predecessor and successor
respectively in the branch version of the chunk. See the algorithms 4.9 and
4.10 for details. If we detect a conflict during the merging of a chunk, we
mark the chunk and all depending chunks as conflicting (more on chunk
dependencies below).

Once we have computed a merged version for every unstable chunk (or
detected a conflict), we use the chunks to assemble merged versions of the
lists. We use the merged versions of conflict-free chunks and the base versions
of conflicting chunks.

After building these merged versions of the lists, we modify the change
objects in the CDGs to represent the transformation of the base versions into
the merged versions. We also update the conflictingChanges and conflictPairs
sets to represent the resolution of the conflicts.

Note about algorithm 4.8

We do not list implementations for all subprocedures used in the list merge
algorithm and instead describe them here. computeListsToMerge() selects
the lists that should be merged according to the conditions specified in section
4.2.4, page 49. conflictingDependencies(chunk) is true if chunk depends
on some other chunk that is marked as conflicting. markDepending(chunk)

recursively marks all chunks that depend on chunk as conflicting.
translateIntoChanges(list) modifies the CDGs, conflict pairs etc. to
reflect the computed merged list and the resolution of conflicts.

Dependencies between chunks

Consider a change that moves a list element from one chunk to another
chunk of the same or a different list. We can only apply this change if both
the origin and the destination chunk are not conflicting. From this, some
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dependencies between chunks arise. A conflict in one chunk could be the
reason why another chunk must be marked as conflicting as well even if that
other chunk would otherwise be conflict-free.

The algorithm for unordered lists

The algorithm for unordered lists differs just slightly. If both branches alter
an element, they are only conflicting if they do not agree on the parent of the
element. If no unique best position can be found, elements are inserted such
that their immediate predecessor in the merged version is also a predecessor
in one of the branch versions. If no such predecessor exists, elements are
inserted at the beginning of the list.
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1: listsToMerge ← computeListsToMerge( )
2: for all listsToMerge do
3: chunks ← computeDiff3Parse(list)
4: end
5: conflictingChunks ← ∅
6: for all unstable chunks do
7: for all elem ∈ chunk.A do
8: posA ← findPosition(elem, chunk.A, chunk.merged)
9: posB ← findPosition(elem, chunk.B, chunk.merged)

10: action ← computeMergeAction(cdgA, elem, chunk)
11: if action = Conflict then
12: conflictingChunks.insert(chunk)
13: else if action = Insert then
14: if posA = NULL ∨ conflictingDependencies(chunk) then
15: conflictingChunks.insert(chunk)
16: else
17: chunk.merged.insert(elem, posA)
18: end
19: else
20: . action = DoNothing.
21: end
22: end
23: do the same symmetrically for elements in chunk.B
24: if chunk ∈ conflictingChunks then
25: markDepending(chunk)
26: end
27: end
28: for all listsToMerge do
29: mergedList ← [ ]
30: for all chunks of list do
31: if chunk is conflict-free or stable then
32: mergedList.append(chunk.merged)
33: else
34: mergedList.append(chunk.base)
35: end
36: end
37: translateIntoChanges(mergedList)
38: end

Comment: For details about used subprocedures with no listed implementa-
tion, refer to the note in section 4.2.4, page 50.

Algorithm 4.8: The list merge algorithm
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1: function findPosition(element, branchChunk, mergedChunk)
2: pred ← branchChunk.pred(element)
3: while pred /∈ mergedChunk ∧ pred 6= branchChunk.before do
4: pred ← branchChunk.pred(pred)
5: end
6: succ ← branchChunk.succ(element)
7: while succ/∈ mergedChunk ∧ succ 6= branchChunk.after do
8: succ ← branchChunk.succ(succ)
9: end

10: predInMerged ← mergedChunk.find(pred)
11: if mergedChunk.succ(predInMerged) = succ then
12: return predInMerged
13: else
14: return NULL
15: end
16: end

Comment: chunk.pred(element) and chunk.succ(element) return the
predecessor and successor of element in chunk.

Algorithm 4.9: findPosition

53



1: function computeMergeAction(cdgA, element, chunk)
2: changeA ← cdgA.find(element.id)
3: if changeA.kind = Insertion then
4: return Insert
5: else if element ∈ chunk.merged then
6: return DoNothing
7: else if alters(cdgA, element) ∧ alters(cdgB, element) then
8: if posA = posB then
9: return Insert

10: else
11: return Conflict
12: end
13: else if alters(cdgB, element) then
14: return DoNothing
15: else . This branch or neither branch alters the element.
16: return Insert
17: end
18: end

Comment: alters(cdg,element) is true if cdg contains a change that
deletes the element, moves it to another parent or chunk or if its position
relative to any other element in the chunk is different than in the base version.

Algorithm 4.10: computeMergeAction
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Chapter 5

Correctness of the AST Merge
algorithm

5.1 Formal interface of the AST Merge algo-

rithm

Let TA and TB be the two AST of the respective branches A and B that
shall be merged and let Tbase be the AST in the state of the closest common
ancestor commit of A and B. The algorithm takes the trees TA, TB and Tbase

as input and produces the following outputs:

• An AST Tmerged that is the merged version of TA and TB.

• A set of changes conflictingChanges. These changes are part of con-
flicts that could not be resolved and were not applied to Tmerged.

The postcondition of the algorithm is the following:

1. Tmerged is of valid form.

5.2 Assumptions about inputs and configura-

tion

• TA, TB and Tbase are of valid form.

• The IDs of newly inserted nodes are unique. No node with the same
ID exists and no node will be created with the same ID.

• The pipeline initializer and all pipeline components comply with their
respective interfaces.
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• ListTypes ∩ UnorderedTypes = ∅

5.3 Correctness of the generic algorithm

We remind ourselves of the preconditions of the pipeline initializer which the
AST Merge algorithm must establish before executing the initializer.

1. Tbase, TA and TB are of valid form.

2. Applying all and only changes from cdgA to Tbase results in TA.

3. Applying all and only changes from cdgB to Tbase results in TB.

4. Both sets conflictingChanges and conflictPairs are empty.

5. cdgA and cdgB are acyclic

We show that the AST Merge algorithm establishes all of these preconditions.
Since the trees are not modified before executing the initializer, precondition
1 directly follows form the assumptions in the previous section. We initially
build the CDGs with all changes computed by the AST Diff algorithm, hence
preconditions 2 and 3 are satisfied. We initialize conflictingChanges and
conflictPairs as empty sets, therefore precondition 4 is also satisfied. The
CDGs are initialized such that precondition 5 is satisfied (see proof in section
4.1.1).

All preconditions of the pipeline initializer are satisfied so it establishes
the pipeline invariants which we have defined as follows where
nonconflicting = cdgA.changes ∪ cdgB.changes− conflictingChanges and
Tmerged is the tree that results from applying all changes in nonconflicting
to Tbase.

1. If sorted topologically by dependencies, all changes in nonconflicting
can be applied.

2. Tmerged is of valid form.

3. Node IDs are unique in TA and TB.

4. All conflicting changes are either part of a conflict pair or depend on a
conflicting change.

5. cdgA and cdgB are acyclic.
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With these invariants established, we can execute the pipeline wherein every
component establishes the invariants for the next one. After the pipeline
has been executed, we build the set nonconflicting and order the changes
topologically according to their dependencies. We know such a topological
ordering exists from invariant 5. By invariant 1, we can apply all changes in
nonconflicting to a copy of Tbase which, by pipeline invariant 2, results in a
tree Tmerged of valid form. With this, we have shown that the postcondition
of the AST Merge algorithm is satisfied.

5.4 Extended validation of components

We would like to specify properties that the tree resulting from our merge
algorithm has. Because we support generic pipeline components, we would
have to specify an interface for them that is strong enough to eventually yield
the properties specified for the merge algorithm as a whole. We found that
every interface we considered either rendered some hypothetical but desirable
and reasonable component impossible or simply failed to provide interesting
properties. It seems that a definition that is satisfactory in general, if it
exists, is prohibitively complex. This is further complicated by the fact that
our merge algorithm is language agnostic.

We decided instead to create a framework that would allow us to define
and check properties of individual component executions. Concretely, we
define the states before and after the component execution and a transition
semantics that relates the two states. A state is described by a partitioning
of all changes. We call such partitions linked changes. Changes in the same
partition are considered linked in the sense that they have some arbitrary
relation to each other (e.g. dependency, conflict, etc.). A state transition
is a mapping of the partitions of the old state to the partitions of the new
state. This mapping is surjective i.e. for every partition in the new state,
there exists at least one partition in the old state that is mapped to it.

An example of such a transition is shown in figure 5.1. The red squares
represent changes, the linked changes are in green and the tall rectangles are
the set of all changes in each state. The arrows indicate the mapping of the
transition. This transition could be interpreted as follows. Changes 1 and 2
are not modified. Change 3 is replaced with change 7. Change 4 is related
to change 5 and/or 6 and together they prompted change 8 to be created.

The idea is that a component outputs such a transition, relating its input
state to its output state. One can think of the transition as a record and
justification of any creation, deletion or modification of changes. A checker
operating on such a transition can then judge if all modifications made by
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Figure 5.1: Related changes and transition

the component are reasonable. In principle, one is free to apply any number
of checkers on any number of transitions so for example one could have one
checker that checks all components in the pipeline and another that only
checks the transition of one specific component.

We give an example to illustrate how this framework could be used to
check a certain property. Assume we would like to restrict one or several com-
ponents so that they may only modify a previously unchanged node if its par-
ent, a sibling or a child is changed. We would then implement a checker that,
for all such new changes, does the following check: Let newChange be the
change in question and let newState and oldState be the new and old states.
Let newSet be the set of linked changes such that newChange ∈ newSet ∈
newState. Then it must hold that ∃oldChange ∈ oldSet ∈ oldState where
oldChange modifies the parent, a sibling or a child of the node modified by
newChange.

5.5 Correctness of the conflict unit pipeline

initializer

We argue that when the conflict unit pipeline initializer returns, the pipeline
invariants are established.
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5.5.1 Pipeline invariants 1 and 2

We consider an arbitrary change changeA of branch A that is in
nonconflicting (i.e. changeA /∈ conflictingChanges) when the component
returns and show that it can be applied to Tmerge (which starts out as Tbase)
and that its application does not violate valid form. The argument for a
change of branch B is symmetric.

This proof works by induction over the change dependency graph which is
acyclic, as we have shown in section 4.1.1. We assume that all changes that
changeA depends on (i.e. all changes that can be reached from changeA
in the CDG) can be applied and that their application does not violate
valid form. For the base case where changeA does not depend on any other
changes, it is trivial that this assumption is valid so the form of the proof
for the base case is identical. We make a case distinction on the kind of
changeA.

Case Insertion:
If changeA is of kind Insertion, a parent node parent ∈ Tmerge : parent.id =

changeA.nodeB.parentId must exist to apply it.
If parent exists in Tbase then it also exists in Tmerge at the time we apply

changeA unless branch B deletes parent with a changeB. changeA is a
child structure change of parent, therefore there is a change parentChangeA
of branch A that affects parent and thus ConflictRoot(parent). changeB
deletes parent and therefore also affects ConflictRoot(parent) which means
changeB gets marked as conflicting so parent is not deleted and changeA
can be applied.

If parent does not exist in Tbase then, from the fact that TA is of valid form,
we know that branch A inserts parent into Tmerge with a parentChangeA
which changeA depends on. By the induction assumption parentChangeA
can be applied. Since parentChangeA comes before changeA in a topological
ordering, we know that when we apply changeA, parentChangeA has already
been applied, therefore parent exists in Tmerge and changeA can be applied.

Because TA is of valid form and the ID of changeA.nodeB is new and
therefore unknown to branch B it follows that the ID of changeA.nodeB is
unique in Tmerge.

It remains to show that applying changeA does not result in parent
having two children with the same label.

In the case where @node ∈ Tbase : node.parentId = parent.id∧node.label =
changeA.nodeB.label, the only way to get a label collision is if branch B
changes a node with a changeB in such a way that changeB.nodeB.parentId =
parent.id ∧ changeB.nodeB.label = changeA.nodeB.label. Since no such
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node existed in Tbase, it follows that changeB.kind 6= Stationary ∨
changeB.labelF lag = True. Both changeA and changeB are child-structure-
changes of parent thus there exist changes parentChangeA of branch A and
parentChangeB of branch B that both affect parent and have structF lag
set. Then from the definition of child-structure-change conflicts of section
4.2.3 follows (changeA, changeB) ∈ conflictPairs which is in contradiction
to changeA being in nonconflicting. Therefore branch B makes no such
change and no label collision occurs.

This leaves the case where ∃node ∈ Tbase : node.parentId = parent.id ∧
node.label = changeA.nodeB.label. Since TA is of valid form, we know that
branch A changes node with a changeA′ : changeA′.nodeA = node to change
its parent or label. The following holds.

changeA′.nodeA.parentId = changeA.nodeB.parentId∧

changeA′.nodeA.label = changeA.nodeB.label

From this it follows that changeA depends on changeA′ in the sense of label-
dependencies explained in section 4.2.3. Assume changeA′ /∈ nonconflicting.
Therefore changeA′ ∈ conflictingChanges which means that
markDepending(changeA′) was executed and all changes depending on
changeA′ in the sense of label-dependencies have been added to
conflictingChanges. This includes changeA thus
changeA /∈ conflictingChanges which leads to a contradiction and there-
fore the assumption changeA′ /∈ nonconflicting was wrong. Both changeA
and changeA′ are in nonconflicting and are applied thus a label collision in
Tmerge is averted.

In all other cases changeA.nodeA must exists in Tmerge in order to apply
changeA.

Case Deletion:
changeA.nodeA must exists in Tmerge in order to apply changeA.

changeA.nodeA exists unless branch B deletes it with a changeB. In this
case both changes affect ConflictRoot(changeA.nodeA) which leads to a con-
tradiction, therefore changeA.nodeA exists. If changeA is of kind Deletion
then to apply it, changeA.nodeA must not have any children. If
changeA.nodeA has any children in Tbase then, from the fact that TA is of
valid form, we know that branch A deletes or moves away all children of
changeA.nodeA. changeA is dependent on all these deletions and moves
therefore these will all have been applied when changeA is applied. There-
fore changeA.nodeA does not have any children unless branch B inserts
or moves a child under changeA.nodeA with a changeB. changeB is a
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child structure change of changeA.nodeA and therefore branch B also af-
fects ConflictRoot(changeA.nodeA) which leads to a contradiction.

Case Stationary:
By the same argument as in the Deletion case, changeA.nodeA exists in

Tmerge therefore changeA can be applied. For the case where
changeA.labelF lag is set, we have to show that changeA does not result in
a label collision. The argument for this is analogous to the Insertion case.

Case Move:
If changeA is of kind Move, in addition to the conditions described for

the Stationary case (for which the proof is identical), the new parent of the
moved node must exist. The arguments why this parent must exist and why
no label collisions occur are analogous to the Insertion case.

With this, we have shown that pipeline invariants 1 and 2 are established
by the conflict unit component.

5.5.2 Pipeline invariants 3, 4 and 5

By assumption, TA and TB are of valid form before the component is ex-
ecuted. Valid form implies uniqueness of IDs and since we do not modify
TA or TB it follows that invariant 3 holds when the component returns. To
see that invariant 4 is established we note that whenever we add a change
to conflictingChanges, we either also add a pair containing that change to
conflictPairs or the change depends on another change in
conflictingChanges. By only adding changes in this manner, we never vi-
olate invariant 4 and it still holds when the component returns. According
to precondition 5 of the pipeline initializer, invariant 5 holds just before the
component is executed. Since we do not modify the CDGs, it follows that
invariant 5 also holds when the component returns. �
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Chapter 6

Evaluation

In this chapter we highlight the advantages of some of the features of our
algorithms when compared to a traditional line-based version control system
like Git. We also revisit a case for which the previous implementation did
not produce the correct output and illustrate how the new implementation
addresses the issue.

6.1 Corrected AST Diff algorithm

This is an example that illustrates the issues briefly described at the begin-
ning of the AST Diff chapter (ch.3) which caused incomplete results in the
old implementation. Consider the situation illustrated in figure 6.1 where
the labels of nodes B and C are switched and node D is moved from B to C.
Notice how the node line of D is not modified and even stays at the exact
same position. When calling git diff on these two versions, this node line
will be regarded as unchanged and will not be part of the line diff. This has
the result that the fact that node D is moved to a new parent is not detected
by the old AST Diff algorithm.

Compare now the same situation with the new encoding and algorithm
as seen in figure 6.2. All lines except the root have changed and are therefore
included in the line diff. The move of node D is detected.

6.2 Comparing the AST Merge algorithm to

a text-based approach

This section explores different merge scenarios and examines how a tradi-
tional text-based VCS compares to Envision’s solution. Concretely, we com-
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A

B

D

C

root ListOfFoo {0ec91...be77e}

0 Foo {f4d3b...dbf9b}

value Name {fab00...4b6e3}. S_D

1 Foo {6eeed...13b49}

A

C

D

B

root ListOfFoo {0ec91...be77e}

0 Foo {6eeed...13b49}

value Name {fab00...4b6e3}. S_D

1 Foo {f4d3b...dbf9b}

Figure 6.1: An AST evolution that lead to a incomplete diff output.

root ListOfFoo {0ec91...be77e} {00000...00000}

0 Foo {f4d3b...dbf9b} {0ec91...be77e}

value Name {fab00...4b6e3} {f4d3b...dbf9b}. S_D

1 Foo {6eeed...13b49} {0ec91...be77e}

root ListOfFoo {0ec91...be77e} {00000...00000}

0 Foo {6eeed...13b49} {0ec91...be77e}

value Name {fab00...4b6e3} {6eeed...13b49}. S_D

1 Foo {f4d3b...dbf9b} {0ec91...be77e}

Figure 6.2: The same AST evolution with the new encoding.
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pare our AST Merge algorithm in the configuration of using both the pre-
sented pipeline initializer and list merge component with Git1, one of the
most popular version control systems.

6.2.1 Relocating a class

Consider a class ClassBar with a few fields and methods that is written in
a file myClasses containing other classes. Now consider the situation where
branch A moves ClassBar from its original file into its own file classBar.
At the same time, branch B makes a few changes to a method of ClassBar.

Git regards the changes of branch A as the deletion of many lines in
myClasses and a creation of a new file classBar and the changes of branch
B as a few modifications in myClasses. The changes of branch B affect some
of the same lines that are deleted by branch A and so a conflict is detected
in the file myClasses. The user has to manually apply the changes of branch
B to the code in file classBar.

Envision’s VCS handles the same situation differently. First of all, projects
are split across multiple files implicitly and transparently. It is likely that
a change like the one performed by branch A will never be necessary in the
first place. Only if branch A makes an actual semantic change like moving
ClassBar into a different package will this be a change for Envision. In this
case, the change of branch A is simply a Move operation on the node of
ClassBar. Assuming method nodes are conflict roots, this change is not in
conflict with the changes of branch B and the changes of both branches are
applied in the final merged version without additional input from the user.

6.2.2 Conflict-unit-based conflict detection

Consider the situation illustrated by listings 6.1 through 6.3 where both
branches fix a buggy increment of the loop variable. Git resolves this conflict
by applying both changes, resulting in the loop variable getting updated
twice as seen in listing 6.4. The automatic merging algorithm has created
a bug that is not detected at compile time but only by testing or manual
inspection.

Now consider the same situation in Envision where the AST node rep-
resenting the while-loop and the statements themselves are conflict roots.
Both branches move the increment and thus make changes that affect the
child structure of the loop body so during execution of the conflict unit com-
ponent, these changes are detected as conflicting. The list merge algorithm

1git-scm.com
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detects that both branches moved the element into different positions and
does not resolve the conflict and so the user is notified who then merges the
fixes manually without causing a bug.

Listing 6.1: Base version

whi le ( i < n) {
i ++;
sum += arr [ i ] ;
prod ∗= arr [ j ] ;
j++;

}

Listing 6.2: Branch A

whi le ( i < n) {
sum += arr [ i ] ;
prod ∗= arr [ j ] ;
j++;
i ++;

}

Listing 6.3: Branch B

whi le ( i < n) {
sum += arr [ i ] ;
prod ∗= arr [ j ] ;
i ++;
j++;

}

Listing 6.4: Git merge result

whi l e ( i < n) {
sum += arr [ i ] ;
prod ∗= arr [ j ] ;
i ++;
j++;
i ++;

}

6.2.3 Concurrent modification of unordered lists

Consider a language like Java where the order of method definitions does
not matter. We examine the scenario where both branches add a method
to the same class and at the same position. When merging, Git detects a
conflict and the user has to manually merge the file and make sure that both
methods get included correctly.

Envision regards the same scenario as two insertions of independent nodes
into the same unordered list. Assuming the methods are conflict roots, the
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only conflict detected by Envision are the two changes of the child structure
of the method list. This conflict can be resolved by the list merge component
so that both new methods are inserted correctly in the final merged tree.

6.2.4 Resolving conflicts in ordered lists

In the scenario illustrated by listings 6.5 through 6.7, branch A removes
the line foo(bar) while branch B removes the same line, moves the line
foobar(bar) to that location and adds a new line baz(). When attempting
to merge with Git, a conflict is detected, even though all changes of branch A
are also made by branch B.

In Envision, the move of the foobar(bar) statement is detected as such
and during execution of the list merge component these conflicts are resolved.
Both branches agree on the deletion of the foo(bar) statement and for both
statements foobar(bar) and baz() a unique best position can be found.
The merge result of Envision is equivalent to the version of branch B.

Listing 6.5: Base version

/∗
∗ some code
∗/

foo ( bar ) ;
/∗
∗ more code
∗/

foobar ( bar ) ;
/∗
∗ even more code
∗/
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Listing 6.6: Branch A

/∗
∗ some code
∗/

/∗
∗ more code
∗/

foobar ( bar ) ;
/∗
∗ even more code
∗/

Listing 6.7: Branch B

/∗
∗ some code
∗/

foobar ( bar ) ;
baz ( ) ;
/∗
∗ more code
∗/

/∗
∗ even more code
∗/
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Chapter 7

Implementation Details

This chapter aims to explain some of the aspects of the implementation that
might not be obvious on first sight. We try to shed light on certain implemen-
tation details and explain some of the decisions made. Developers extending,
debugging or refactoring the code should read this section and have a thor-
ough understanding of the discussed systems before making changes.

7.1 Lazy-loading nodes in change objects

We generally want to avoid loading nodes if not necessary. This is why we
do not load the whole trees during the diff but work only from the node
lines supplied by Git. It is possible however that we want to create a change
object to mark a child structure change for a node whose node line is not
modified and therefore never passed by Git. Only the ID of the affected node
is known. We could just always use a git grep call to load the node but this
is not cheap and it is possible that the loaded node is not even used after.
Where possible, we avoid loading the node immediately by storing a pointer
to the child node (whose change has caused the child structure change in the
first place) instead. When the affected node is actually needed at some point
in time, it can be loaded by getting the parent of the linked child.

7.2 Maintaining tree invariants

GenericTree objects have some invariants and its worth mentioning when
and where some of them are established and checked. Consider the following
invariants. (1) In a tree that has a quickLookupHash, every loaded node is
contained therein. (2) Within a tree, node IDs are unique. (3) Every loaded
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node is linked (i.e. has valid pointers in its parent children members) to
all appropriate loaded nodes.

These invariants are not established by the GenericTree alone but also
by anyone creating new nodes in the tree. Whenever an entity creates a new
node, it is responsible to call linkNode on that node, which then establishes
the mentioned invariants. Removing nodes should always be done by calling
GenericTree::remove and not GenericNode::remove as only the former
will maintain invariant (1) from above.

The reason for this is that currently the only way to get the id of a node
line is to create the node and then read from it. This requires the ability
to create a node and discard it again if its ID already exists in the tree.
This also allows to more easily ignore these invariants in cases where the
GenericTree is purely used to allocate node objects without unique IDs and
no links between them.

7.3 Details of the list merge component

7.3.1 Propagation of conflicts for chunks

Consider a pair of chunks that depend on each other. When computing
the first chunk, we do not yet know the conflict state of the other. We
take an optimistic approach and assume the other chunk resolves without
conflicts but we record the fact that the current chunk being conflict-free
depends on the other chunk being conflict-free. We do so with the mapping
chunkDependencies which maps a given chunk to the set of chunks that have
to be marked as conflicting should the given chunk get marked as conflicting.
This need to mark chunks as conflicting retroactively is the reason why we
first compute all chunks of all lists before beginning to merge them.

7.3.2 Translating ID lists into changes and marking
conflicts as resolved

Once we have computed all merged lists, we need to translate these results
back into the context of changes, CDGs and conflict pairs. To do so we
iterate over the merged lists and, if one exists, modify an existing change
of one of the branches (and mark its conflicts as resolved) or create a new
change. This works well for all changes except for deletions. Intuitively, one
would think that we could simply check what elements exist in the original
lists but not in the merged lists. This however does not take into account
that merged lists also do not include elements of conflicting chunks. We
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have to be able to distinguish whether an element is not present in a list
because it was deleted or because its chunks had a conflict. For this reason,
we handle deletions already when creating the merged lists from the chunks.
Only deletions in conflict-free chunks are marked as resolved.

7.4 Related changes and transitions

Transitions relate an earlier state to a later state. Because
ChangeDescription objects are mutable it is necessary to always create a
copy of the current state before executing a component. This not only in-
cludes copying the ChangeDescription objects but also the GenericNode

objects it points to. A copy of these requires a GenericTree as an allocation
manager. To avoid creating multiple such trees for each transition, we only
create one but ignore the invariants that are usually desired for the tree. This
allows us to allocate all necessary nodes in the same tree while also not re-
quiring the contained nodes to be linked. This is an important consideration
when implementing a component checker.
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Chapter 8

Future Work

8.1 Partially completed work

The original plan was to produce a proof of correctness for the AST Merge
algorithm and its components in the same style as the one we presented for
the AST Diff algorithm. Unfortunately, we could not get as formal as we
wished. We believe however that the presented argument for correctness,
in addition to its inherent value, provides some intuition as to how a more
formal proof would work.

We also wish we had more time to further evaluate the designed system. A
more in-depth evaluation could reveal less obvious advantages to traditional
systems or highlight where there is room for improvement.

The conceptual work on extended component validation was finished rel-
atively late into the project. For this reason there was insufficient time left
to implement linked changes and transitions for the list merge component.

8.2 Applying the presented principles outside

of Envision

We would like to make it possible to apply the principles of Envision’s VCS,
especially the merge algorithm, to projects not written in Envision. Envi-
sion already features an import feature for certain languages that translates
textual source code into the tree-based representation our VCS works with.
Unfortunately, this feature cannot be used directly to import revision his-
tories from traditional VCSs because during the import all AST nodes are
created with unique IDs that have no relation to other revisions in the history.

A more advanced translation functionality would have to be developed
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that matches up nodes from the ASTs of the different versions and assigns
matched nodes the same ID. Both Falleri [2] and Hashimoto [3] have pro-
posed good algorithms to find such a matching between trees. Once such a
translation functionality has been implemented, all the presented principles
can be used and integrated with traditional VCSs.

8.3 Visualization of merges

Often users want to review the result of a merge. To help the user under-
stand the changes made by both branches and how they were merged, most
traditional version control systems resort to showing the diffs comparing the
merged version to its ancestors, possibly relating these diffs to each other to
further help the user. A great addition to Envision’s VCS would be a user
interface serving a similar purpose. Thanks to the semantic information in
change objects and the visualizations available in Envision, it should be pos-
sible to convey more valuable information more clearly. A good user interface
would help a great deal in improving the usability of Envision’s VCS.

8.4 User interfaces for manual conflict reso-

lution

Even the best merge algorithm cannot resolve all conflicts. This is when the
user has to be asked for input. Ideally this input only consists of a choice
between multiple good solutions and an optional set of corrections. To give
this input, the user has to understand the context of the choices. Future
work could explore how to present existing information to the user and how
the user makes their choice to create an efficient work flow. We believe this
work will be closely related to how merges are visualized.

These explorations would also reveal clearly how the AST Merge algo-
rithm should proceed in cases where not all conflicts could be resolved. Cur-
rently the conflicting changes are returned without context which is most
likely not satisfactory. Especially interesting would be to see if the issue of
manual conflict resolution can be solved only with pipeline components.

8.5 Additional Components

With our work we have created a solid foundation on which future contrib-
utors to Envision can build on. We have some ideas for future components
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and would like to list a few here.

• Cases where both branches make the same change like deleting the
same node are seen as conflicting in the current implementation. Such
conflicts could be resolved by a component that finds such cases and
simply removes one of the changes.

• Renaming entities can cause problems after merging. If a branch re-
names an entity and is later merged with a branch that also makes
changes involving this entity, then the code of this latter branch might
refer to the entity by its old, now non-existing name. Such conflicts
are not detected by traditional version control systems and often only
surface at compile time. Since in Envision, entities are not only refer-
enced by name but also include the ID of the AST node that declares
the referenced entity, it is possible to detect an action of renaming as
such. This allows the detection and subsequent resolution of conflicts
caused by renaming.

• Consider the situation where one branch makes a small change in a
method and the other branch deletes the whole method. A reasonable
way to resolve this conflict would be to rate the small change inside the
method as insignificant compared to the deletion of the entire method.
It would be interesting to see a component that implements such a
policy that resolves conflicts by ranking some change as more important
and discarding conflicting changes.

• One could implement a simpler pipeline initializer that does not make
use of conflict units and is agnostic of the language model. This would
then make it possible to use the AST Merge algorithm even if no Con-
flictTypes set has been specified.

• There is no reason why components should be completely autonomous.
Considering conflicts that can be automatically resolved in multiple
ways for which the component cannot decide which solution should be
realized, getting user input during component execution could prove
very useful.

8.6 Component Validation

We would like to see some work that extends or makes use of the validation
framework we have built for components. Even if it is just a proof-of-concept,
we would like to see a working component checker. Building such a checker
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could reveal strengths and weaknesses of the validation framework. We have
proposed such a checker in section 5.4.
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Chapter 9

Conclusion

Martin Otth designed the core of a version control system for Envision [6]. We
have built on his work to improve some key aspects. The here presented AST
Diff algorithm is an only slightly modified version of the original proposal.
We have precisely defined what the differences between two ASTs are and
have shown that our algorithm conforms to this definition and produces the
expected output. This proof of correctness gives us great confidence in our
model.

Doing a similar investigation of the merge algorithm proposed by Otth
proved to be much more involved. It became clear that in order to arrive at
an algorithm we could reason about we would have to completely overhaul
the merge algorithm. This gave us the opportunity to create a design in
which plug-in behavior is a core feature. The AST Merge algorithm we have
presented provides a modular approach to merging that can be configured
for any number of possible behaviors and policies. We have defined an inter-
face for merge components that, if observed, provides meaningful and useful
guarantees for the resulting merged AST.

Going beyond these general properties of validity, with linked changes
and transitions we have proposed a framework enabling the validation of
components. Much in the same spirit as the AST Merge algorithm itself,
this framework focuses on modularity and extensibility. This also averts the
issue of imposing an interface on the components that is too strict which
would prevent the implementation useful components.

We have presented a few examples of merge scenarios that highlight sev-
eral advantages of our system over a traditional, text-based solution. Envi-
sion’s version control system detects more real conflicts and avoids some false
positives. Additionally, our algorithm for resolving conflicts in lists further
reduces the manual work required from the user.
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[2] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez,
and Martin Montperrus. Fine-grained and accurate source code differ-
encing. In Proceedings of the 29th ACM/IEEE international conference
on Automated software engineering, pages 313–324. ACM, 2014.

[3] Masatomo Hashimoto and Akira Mori. Diff/ts: A tool for fine-grained
structural change analysis. In Reverse Engineering, 2008. WCRE’08.
15th Working Conference on, pages 279–288. IEEE, 2008.

[4] Sanjeev Khanna, Keshav Kunal, and Benjamin C Pierce. A formal inves-
tigation of diff3. In FSTTCS 2007: Foundations of Software Technology
and Theoretical Computer Science, pages 485–496. Springer, 2007.

[5] Tancred Lindholm. A three-way merge for xml documents. In Proceed-
ings of the 2004 ACM symposium on Document engineering, pages 1–10.
ACM, 2004.

[6] Martin Otth. Fine-grained software version control based on a program’s
abstract syntax tree. Master thesis, ETH Zurich, 2014.

[7] Bernhard Westfechtel. Structure-oriented merging of revisions of software
documents. In Proceedings of the 3rd international workshop on Software
configuration management, pages 68–79. ACM, 1991.

76




	Introduction
	Motivation
	Related work
	Existing Envision VCS and goals
	Report structure

	Fundamental Concepts
	Nomenclature
	Abstract Syntax Trees (ASTs)
	Definition of Valid Form

	Encoding of ASTs and AST nodes
	Definition of Changes
	Child structure changes
	Extension of change objects


	The AST Diff Algorithm
	Formal interface of the AST Diff algorithm
	Assumptions about the line diff
	Correctness of the AST Diff algorithm
	Intermediate state 1
	Intermediate state 2
	Intermediate state 3
	Final output


	The AST Merge Algorithm
	Change Dependency Graphs (CDGs)
	CDGs are acyclic

	Conflict detection and resolution pipeline
	Interface of pipeline initializers
	Interface of pipeline components
	The Conflict Unit pipeline initializer
	The List Merge pipeline component


	Correctness of the AST Merge algorithm
	Formal interface of the AST Merge algorithm
	Assumptions about inputs and configuration
	Correctness of the generic algorithm
	Extended validation of components
	Correctness of the conflict unit pipeline initializer
	Pipeline invariants 1 and 2
	Pipeline invariants 3, 4 and 5


	Evaluation
	Corrected AST Diff algorithm
	Comparing the AST Merge algorithm to a text-based approach
	Relocating a class
	Conflict-unit-based conflict detection
	Concurrent modification of unordered lists
	Resolving conflicts in ordered lists


	Implementation Details
	Lazy-loading nodes in change objects
	Maintaining tree invariants
	Details of the list merge component
	Propagation of conflicts for chunks
	Translating ID lists into changes and marking conflicts as resolved

	Related changes and transitions

	Future Work
	Partially completed work
	Applying the presented principles outside of Envision
	Visualization of merges
	User interfaces for manual conflict resolution
	Additional Components
	Component Validation

	Conclusion

